cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133694 a(n) = (3*n^2 + 3*n - 4)/2.

Original entry on oeis.org

1, 7, 16, 28, 43, 61, 82, 106, 133, 163, 196, 232, 271, 313, 358, 406, 457, 511, 568, 628, 691, 757, 826, 898, 973, 1051, 1132, 1216, 1303, 1393, 1486, 1582, 1681, 1783, 1888, 1996, 2107, 2221, 2338, 2458, 2581, 2707, 2836, 2968, 3103, 3241, 3382, 3526, 3673
Offset: 1

Views

Author

Gary W. Adamson, Sep 20 2007

Keywords

Comments

Binomial transform of 1, 6, 3 followed by A000004, i.e., 1, 6, 3, 0, 0, 0, 0, ... .
Row sums of triangle A133981. - Gary W. Adamson, Sep 30 2007
Equals (1, 2, 3, 4, ...) convolved with (1, 5, 3, 3, 3, ...). Example: a(4) = (1, 2, 3, 4) dot (3, 3, 5, 1) = (3 + 6 + 15 + 4) = 28. - Gary W. Adamson, May 01 2009
Equivalently, numbers of the form 3*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017

Examples

			a(3) = 3*A000217(3) - 2 = 3*6 - 2 = 16.
		

Crossrefs

Programs

  • Magma
    a000217:=func; [3*a000217(n)-2: n in [1..60]];
    
  • Magma
    [(3*n^2+3*n-4)/2: n in [1..50]]; // Vincenzo Librandi, Mar 30 2014
    
  • Maple
    A133694:=n->(3*n^2 + 3*n - 4)/2; seq(A133694(n), n=1..30); # Wesley Ivan Hurt, Mar 26 2014
  • Mathematica
    Table[(3*n^2 + 3*n - 4)/2, {n, 100}]
    CoefficientList[Series[(1 + 4 x - 2 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 30 2014 *)
    LinearRecurrence[{3,-3,1},{1,7,16},50] (* Harvey P. Dale, Sep 05 2020 *)
  • PARI
    a(n)=(3*n^2+3*n-4)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 3*A000217(n) - 2.
a(n) = a(n-1) + 3*n for n > 1, a(1)=1. - Vincenzo Librandi, Nov 23 2010
G.f.: x*(1+4*x-2*x^2)/(1-x)^3. - Vincenzo Librandi, Mar 30 2014
Sum_{n>=1} 1/a(n) = 1/2 + 2*Pi*tan(sqrt(19/3)*Pi/2)/sqrt(57). - Amiram Eldar, Jun 08 2022
E.g.f.: 2 + exp(x)*(3*x*(2 + x) - 4)/2. - Stefano Spezia, Nov 23 2023

Extensions

Edited by Klaus Brockhaus, Nov 23 2010