A133694 a(n) = (3*n^2 + 3*n - 4)/2.
1, 7, 16, 28, 43, 61, 82, 106, 133, 163, 196, 232, 271, 313, 358, 406, 457, 511, 568, 628, 691, 757, 826, 898, 973, 1051, 1132, 1216, 1303, 1393, 1486, 1582, 1681, 1783, 1888, 1996, 2107, 2221, 2338, 2458, 2581, 2707, 2836, 2968, 3103, 3241, 3382, 3526, 3673
Offset: 1
Examples
a(3) = 3*A000217(3) - 2 = 3*6 - 2 = 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Leo Tavares, Illustration: Triple Triangles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
a000217:=func
; [3*a000217(n)-2: n in [1..60]]; -
Magma
[(3*n^2+3*n-4)/2: n in [1..50]]; // Vincenzo Librandi, Mar 30 2014
-
Maple
A133694:=n->(3*n^2 + 3*n - 4)/2; seq(A133694(n), n=1..30); # Wesley Ivan Hurt, Mar 26 2014
-
Mathematica
Table[(3*n^2 + 3*n - 4)/2, {n, 100}] CoefficientList[Series[(1 + 4 x - 2 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 30 2014 *) LinearRecurrence[{3,-3,1},{1,7,16},50] (* Harvey P. Dale, Sep 05 2020 *)
-
PARI
a(n)=(3*n^2+3*n-4)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*A000217(n) - 2.
a(n) = a(n-1) + 3*n for n > 1, a(1)=1. - Vincenzo Librandi, Nov 23 2010
G.f.: x*(1+4*x-2*x^2)/(1-x)^3. - Vincenzo Librandi, Mar 30 2014
Sum_{n>=1} 1/a(n) = 1/2 + 2*Pi*tan(sqrt(19/3)*Pi/2)/sqrt(57). - Amiram Eldar, Jun 08 2022
E.g.f.: 2 + exp(x)*(3*x*(2 + x) - 4)/2. - Stefano Spezia, Nov 23 2023
Extensions
Edited by Klaus Brockhaus, Nov 23 2010
Comments