cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A304678 Numbers with weakly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Comments

Complement of A112769.

Examples

			12 = 2*2*3 has prime multiplicities (2,1) so is not in the sequence.
36 = 2*2*3*3 has prime multiplicities (2,2) so is in the sequence.
150 = 2*3*5*5 has prime multiplicities (1,1,2) so is in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> andmap(i-> l[i, 2]<=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    Select[Range[200],OrderedQ[FactorInteger[#][[All,2]]]&]
    Select[Range[90],Min[Differences[FactorInteger[#][[;;,2]]]]>=0&] (* Harvey P. Dale, Jan 28 2024 *)
  • PARI
    isok(n) = my(vm = factor(n)[,2]); vm == vecsort(vm); \\ Michel Marcus, May 17 2018

A329131 Numbers whose prime signature is a Lyndon word.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 150, 151, 157, 162, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Nov 06 2019

Keywords

Comments

First differs from A133811 in having 50.
A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations.
A number's prime signature is the sequence of positive exponents in its prime factorization.

Examples

			The prime signature of 30870 is (1,2,1,3), which is a Lyndon word, so 30870 is in the sequence.
The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   18: {1,2,2}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose prime signature is a necklace are A329138.
Numbers whose prime signature is aperiodic are A329139.
Lyndon compositions are A059966.
Prime signature is A124010.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    Select[Range[2,100],lynQ[Last/@FactorInteger[#]]&]

Formula

Intersection of A329138 and A329139.

A304686 Numbers with strictly decreasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Examples

			10 = 2*5 has prime multiplicities (1,1) so is not in the sequence.
20 = 2*2*5 has prime multiplicities (2,1) so is in the sequence
90 = 2*3*3*5 has prime multiplicities (1,2,1) so is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],Greater@@FactorInteger[#][[All,2]]&]
  • PARI
    isok(n) = my(vm = factor(n)[,2]); vm == vecsort(vm,,4) && (#vm == #Set(vm)); \\ Michel Marcus, May 17 2018
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(n[2][,2]==vecsort(n[2][,2],,8), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Oct 28 2021

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Oct 28 2021

A144100 Numbers k such that k is strictly greater than f(k), where f(k) = 1 if k is prime, 2 * rad(k) if 4 divides k and rad(k) otherwise.

Original entry on oeis.org

2, 3, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 24, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 59, 61, 63, 64, 67, 71, 72, 73, 75, 79, 80, 81, 83, 88, 89, 90, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109, 112, 113, 117, 120, 121, 125, 126
Offset: 1

Views

Author

Reikku Kulon, Sep 10 2008

Keywords

Comments

This is the set of all integers k such that there exists a full period linear congruential pseudorandom number generator x -> bx + c (mod k), where b is not a multiple of k, b - 1 is a multiple of f(k) and c is a positive integer relatively prime to k.
4 is the only prime power not a member of the set: f(4) = 2 * rad(4) = 4.
This sequence consists of the primes and 2*A013929. - Charlie Neder, Jan 28 2019

Examples

			2 is a member: f(2) = 1 and the sequence (0, 1, 0, ...) given by x -> x + 1 (mod 2) has period 2.
8 is a member: f(8) = 4 and the sequence (0, 1, 6, 7, 4, 5, 2, 3, 0, ...) given by x -> 5x + 1 (mod 8) has period 8.
18 is a member: f(18) = 6 and the sequence (0, 1, 14, 3, 4, 17, 6, 7, 2, 9, 10, 5, 12, 13, 8, 15, 16, 11, 0, ...) given by x -> 13x + 1 (mod 18) has period 18.
		

Crossrefs

Programs

  • Haskell
    a144100 n = a144100_list !! (n-1)
    a144100_list = filter (\x -> a144907 x < x) [1..]
    -- Reinhard Zumkeller, Mar 12 2014
  • PARI
    rad(n) = local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]) ;
    f(n) = if (isprime(n), 1, if ((n % 4)==0 , 2*rad(n), rad(n))); isok(n) = n > f(n); \\ Michel Marcus, Aug 09 2013
    

Formula

A144907(a(n)) < a(n). - Reinhard Zumkeller, Mar 12 2014

A133809 Numbers that are primally tight, have 2 as first prime and strictly ascending powers.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 32, 54, 64, 108, 128, 162, 256, 324, 486, 512, 648, 972, 1024, 1458, 1944, 2048, 2250, 2916, 3888, 4096, 4374, 5832, 8192, 8748, 11250, 11664, 13122, 16384, 17496, 23328, 26244, 32768, 33750, 34992, 39366, 52488, 56250, 65536
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form 2^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are the n first primes.
Subset of A073491, A133811 and A133808.

Examples

			36 = 2^2*3^2 with both exponents being equal is not in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a133809 n = a133809_list !! (n-1)
    a133809_list = 1 : f (singleton (2, 2, 1)) where
       f s = y : f (insert (y*p, p, e+1) $ insert (y*q^(e+1), q, e+1) s')
                 where q = a151800 p
                       ((y, p, e), s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 14 2015
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); if (prod(i=1, nbf, prime(i)) ! = prod(i=1, nbf, f[i, 1]), return (0)); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
    

A145108 Multiples of 4 that are primally tight and have strictly ascending powers.

Original entry on oeis.org

4, 8, 16, 32, 64, 108, 128, 256, 324, 512, 648, 972, 1024, 1944, 2048, 2916, 3888, 4096, 5832, 8192, 8748, 11664, 16384, 17496, 23328, 26244, 32768, 34992, 52488, 65536, 67500, 69984, 78732, 104976, 131072, 139968, 157464, 209952, 236196, 262144
Offset: 1

Views

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

All numbers of the form 2^k0*p_1^k1*p_2^k2*...*p_n^k_n, where 2 <= k0 < k1 < k2 < ... < k_n and the p_i are n successive primes.

Crossrefs

Programs

  • Haskell
    a145108 n = a145108_list !! (n-1)
    a145108_list = filter ((== 0) . (`mod` 4)) a133809_list
    -- Reinhard Zumkeller, Apr 14 2015
Showing 1-6 of 6 results.