cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A087980 Numbers with strictly decreasing prime exponents.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 256, 288, 360, 384, 432, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2160, 2304, 2592, 2880, 3072, 3456, 4096, 4320, 4608, 5184, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 10800
Offset: 1

Views

Author

Rainer Rosenthal, Oct 27 2003

Keywords

Comments

This representation provides a natural ordering between strictly decreasing sequences of natural numbers. Let f and g be such sequences with f(1) > f(2) > ... > f(m) and g(1) > g(2) > ... > g(n). Define f < g iff p^f < p^g, where p^f is short for Product(i=1..m) p_i^f(i) and p^g is defined likewise as Product(i=1..n) p_i^g(i).
Note that "strictly decreasing sequences of natural numbers" is another way to say "partitions into distinct parts".
Also products of primorial numbers p_1#^k_1 * p_2#^k_2 * ... * p_n#^k_n where all k_i > 0.
A124010(a(n),k+1) < A124010(a(n),k), 1 <= k < A001221(a(n)). - Reinhard Zumkeller, Apr 13 2015
Numbers whose prime indices cover an initial interval of positive integers with strictly decreasing multiplicities. Intersection of A055932 and A304686. First differs from A181818 in having 72. - Gus Wiseman, Oct 21 2022

Examples

			The sequence starts with a(1)=1, a(2)=2, a(3)=4 and a(4)=8. The next term is a(5)=12 = 2^2*3^1 = p_1^k_1 * p_2^k_2 with k_1=2 > k_2=1.
		

Crossrefs

The weak (weakly decreasing) version is A025487.
The weak opposite (weakly increasing) version is A133808.
The opposite (strictly increasing) version is A133809.
For strictly decreasing prime signature we have A304686.

Programs

  • Haskell
    import Data.List (isPrefixOf)
    a087980 n = a087980_list !! (n-1)
    a087980_list = 1 : filter f [2..] where
       f x = isPrefixOf ps a000040_list && all (< 0) (zipWith (-) (tail es) es)
             where ps = a027748_row x; es = a124010_row x
    -- Reinhard Zumkeller, Apr 13 2015
    
  • Mathematica
    selQ[k_] := Module[{n = k, e = IntegerExponent[k, 2], t}, n /= 2^e; For[p = 3, True, p = NextPrime[p], t = IntegerExponent[n, p]; If[t == 0, Return[n == 1]]; If[t >= e, Return[False]]; e = t; n /= p^e]];
    Select[Range[12000], selQ] (* Jean-François Alcover, Mar 27 2020, after first PARI program *)
  • PARI
    is(n)=my(e=valuation(n,2),t); n>>=e; forprime(p=3,, t=valuation(n,p); if(t==0, return(n==1)); if(t>=e, return(0)); e=t; n/=p^e) \\ Charles R Greathouse IV, Jun 25 2017
    
  • PARI
    list(lim)=my(v=[],u=powers(2,logint(lim\=1,2)),w,p=2,t); forprime(q=3,, w=List(); for(i=1,#u, t=u[i]; for(e=1,valuation(u[i],p)-1, t*=q; if(t>lim, break); listput(w,t))); v=concat(v,Vec(u)); if(#w==0, break); u=w; p=q); Set(v) \\ Charles R Greathouse IV, Jun 25 2017

Formula

The numbers of the form Product(i=1..n) p_i^k_i where p_i = A000040(i) is the i-th prime and k_1 > k_2 > ... > k_n are positive natural numbers.
Compute x = 2^k_1 * 3^k_2 * 5^k_3 * 7^k_4 * 11^k_5 for k_1 > ... > k_5 allowing k_i = 0 for i > 1 and k_i = k_(i+1) in that case. Discard all x > 174636000 = 2^5*3^4*5^3*7^2*11 and enumerate those below. For more members take higher primes into account.

Extensions

Edited by Franklin T. Adams-Watters, Apr 25 2006
Offset change to 1 by T. D. Noe, May 24 2010

A133808 Numbers that are primally tight, have 2 as first prime and weakly ascending powers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 30, 32, 36, 54, 64, 108, 128, 150, 162, 210, 216, 256, 324, 450, 486, 512, 648, 750, 900, 972, 1024, 1296, 1458, 1470, 1944, 2048, 2250, 2310, 2916, 3750, 3888, 4096, 4374, 4500, 5832, 6750, 7350, 7776, 8192, 8748, 10290, 11250
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form 2^k1*p_2^k2*...*p_n^k_n, where k1 <= k2 <= ... <= k_n and the p_i are the n first primes.
Subset of A073491, A133810.

Examples

			10 = 2*5 with missing prime factor 3 between 2 and 5 is not in the sequence.
12 = 2^2*3 with 2's exponent > 3's exponent is not in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a133808 n = a133808_list !! (n-1)
    a133808_list = 1 : f (singleton (2, 2, 1)) where
       f s = y : f (insert (y * p, p, e + 1) $ insert (y * q^e, q, e) s')
                 where q = a151800 p
                       ((y, p, e), s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 13 2015
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); if (prod(i=1, nbf, prime(i)) ! = prod(i=1, nbf, f[i, 1]), return (0)); for (j=2, nbf, if (f[j,2] < f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
    

A133811 Numbers that are primally tight and have strictly ascending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 162, 163, 167, 169, 173, 179, 181, 191
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are n successive primes.
Subset of A073491, A133810.
Different from A082377 starting n=16.
Different from A000961 (prime powers) starting n=13.

Crossrefs

Programs

  • Haskell
    a133811 n = a133811_list !! (n-1)
    a133811_list = 1 : filter f [2..] where
       f x = (and $ zipWith (<) eps $ tail eps) &&
             (all (== 1) $ zipWith (-) (tail ips) ips)
         where ips = map a049084 $ a027748_row x
               eps = a124010_row x
    -- Reinhard Zumkeller, Nov 07 2012
    
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); my(lastp = 0); for (i=1, nbf, if (lastp && (f[i, 1] != nextprime(lastp+1)), return (0)); lastp = f[i, 1];); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014

A133810 Numbers that are primally tight and have weakly ascending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 77, 79, 81, 83, 89, 97, 101, 103, 105, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 150, 151, 157, 162
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 <= k2 <= ... <= k_n and the p_i are n successive primes.

Crossrefs

Programs

  • Haskell
    a133810 n = a133810_list !! (n-1)
    a133810_list = 1 : filter f [2..] where
       f x = (and $ zipWith (<=) eps $ tail eps) &&
             (all (== 1) $ zipWith (-) (tail ips) ips)
         where ips = map a049084 $ a027748_row x
               eps = a124010_row x
    -- Reinhard Zumkeller, Nov 07 2012

A133809 Numbers that are primally tight, have 2 as first prime and strictly ascending powers.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 32, 54, 64, 108, 128, 162, 256, 324, 486, 512, 648, 972, 1024, 1458, 1944, 2048, 2250, 2916, 3888, 4096, 4374, 5832, 8192, 8748, 11250, 11664, 13122, 16384, 17496, 23328, 26244, 32768, 33750, 34992, 39366, 52488, 56250, 65536
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form 2^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are the n first primes.
Subset of A073491, A133811 and A133808.

Examples

			36 = 2^2*3^2 with both exponents being equal is not in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a133809 n = a133809_list !! (n-1)
    a133809_list = 1 : f (singleton (2, 2, 1)) where
       f s = y : f (insert (y*p, p, e+1) $ insert (y*q^(e+1), q, e+1) s')
                 where q = a151800 p
                       ((y, p, e), s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 14 2015
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); if (prod(i=1, nbf, prime(i)) ! = prod(i=1, nbf, f[i, 1]), return (0)); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
    

A133812 Numbers that are primally tight and have weakly descending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 59, 60, 61, 64, 67, 71, 72, 73, 77, 79, 81, 83, 89, 96, 97, 101, 103, 105, 107, 109, 113, 120, 121, 125, 127, 128, 131, 135, 137, 139, 143, 144
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n and the p_i are n successive primes.
Differs from A073491 starting n=16.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{f=FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; PrimePi[p[[-1]]]-PrimePi[p[[1]]] == Length[p]-1 && AllTrue[Differences[e], #<=0 &]]; Join[{1}, Select[Range[2, 144], aQ]] (* Amiram Eldar, Jun 20 2019 *)

Extensions

Cross-references from Charles R Greathouse IV, Dec 04 2009

A145108 Multiples of 4 that are primally tight and have strictly ascending powers.

Original entry on oeis.org

4, 8, 16, 32, 64, 108, 128, 256, 324, 512, 648, 972, 1024, 1944, 2048, 2916, 3888, 4096, 5832, 8192, 8748, 11664, 16384, 17496, 23328, 26244, 32768, 34992, 52488, 65536, 67500, 69984, 78732, 104976, 131072, 139968, 157464, 209952, 236196, 262144
Offset: 1

Views

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

All numbers of the form 2^k0*p_1^k1*p_2^k2*...*p_n^k_n, where 2 <= k0 < k1 < k2 < ... < k_n and the p_i are n successive primes.

Crossrefs

Programs

  • Haskell
    a145108 n = a145108_list !! (n-1)
    a145108_list = filter ((== 0) . (`mod` 4)) a133809_list
    -- Reinhard Zumkeller, Apr 14 2015
Showing 1-7 of 7 results.