cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153881 1 followed by -1, -1, -1, ... .

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 03 2009

Keywords

Comments

Dirichlet inverse of A074206.

Crossrefs

If prefixed by initial 0, we get A134824.
Cf. A074206 (Dirichlet inverse).

Programs

Formula

G.f: x*(1-2*x)/(1-x). - Mats Granvik, Mar 09 2009, rewritten R. J. Mathar, Mar 31 2010
a(n) = (-1)^A000040(n). - Juri-Stepan Gerasimov, Sep 10 2009
G.f.: x / (1 + x / (1 - 2*x)). - Michael Somos, Apr 02 2012
From Wesley Ivan Hurt, Jun 20 2014: (Start)
a(1) = 1; a(n) = -1, n > 1.
a(n) = 1 - 2*sign(n-1) = 1 - 2*A057427(n-1).
a(n) = (-1)^sign(1-n) = (-1)^A057427(1-n).
a(n) = 2*floor(1/n)-1 = 2*A063524(n)-1. (End)
Dirichlet g.f.: 2 - zeta(s). - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} A033879(d)*A055615(n/d) = Sum_{d|n} A344587(d)*A346234(n/d). - Antti Karttunen, Nov 22 2024

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
More terms from Antti Karttunen, Nov 22 2024

A104967 Matrix inverse of triangle A104219, read by rows, where A104219(n,k) equals the number of Schroeder paths of length 2n having k peaks at height 1.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -1, -1, -3, 1, -1, 0, 0, -4, 1, -1, 1, 2, 2, -5, 1, -1, 2, 3, 4, 5, -6, 1, -1, 3, 3, 3, 5, 9, -7, 1, -1, 4, 2, 0, 0, 4, 14, -8, 1, -1, 5, 0, -4, -6, -6, 0, 20, -9, 1, -1, 6, -3, -8, -10, -12, -14, -8, 27, -10, 1, -1, 7, -7, -11, -10, -10, -14, -22, -21, 35, -11, 1, -1, 8, -12, -12, -5, 0, 0, -8, -27, -40, 44, -12, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Comments

Row sums equal A090132 with odd-indexed terms negated. Absolute row sums form A104968. Row sums of squared terms gives A104969.
Riordan array ((1-2*x)/(1-x), x(1-2*x)/(1-x)). - Philippe Deléham, Dec 05 2015

Examples

			Triangle begins:
   1;
  -1,  1;
  -1, -2,  1;
  -1, -1, -3,  1;
  -1,  0,  0, -4,  1;
  -1,  1,  2,  2, -5,  1;
  -1,  2,  3,  4,  5, -6,  1;
  -1,  3,  3,  3,  5,  9, -7,  1;
  -1,  4,  2,  0,  0,  4, 14, -8,  1;
  -1,  5,  0, -4, -6, -6,  0, 20, -9, 1; ...
		

Crossrefs

Cf. A347171 (rows reversed, up to signs).

Programs

  • Magma
    A104967:= func< n,k | (&+[(-2)^j*Binomial(k+1, j)*Binomial(n-j, k): j in [0..n-k]]) >;
    [A104967(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 09 2021
  • Maple
    A104967:= (n,k)-> add( (-2)^j*binomial(k+1, j)*binomial(n-j, k), j=0..n-k);
    seq(seq( A104967(n,k), k=0..n), n=0..12); # G. C. Greubel, Jun 09 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= Which[k==n, 1, k==0, 0, True, T[n-1, k-1] - Sum[T[n-i, k-1], {i, 2, n-k+1}]];
    Table[T[n, k], {n, 13}, {k, n}]//Flatten (* Jean-François Alcover, Jun 11 2019, after Peter Luschny *)
  • Maxima
    T(n,k):=sum((-2)^i*binomial(k+1,i)*binomial(n-i,k),i,0,n-k); /* Vladimir Kruchinin, Nov 02 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-2*X)/(1-X-X*Y*(1-2*X)),n,x),k,y)}
    for(n=0, 16, for(k=0, n, print1(T(n, k), ", ")); print(""))
    
  • Sage
    def A104967_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..10): print(A104967_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: A(x, y) = (1-2*x)/(1-x - x*y*(1-2*x)).
Sum_{k=0..n} T(n, k) = (-1)^n*A090132(n).
Sum_{k=0..n} abs(T(n, k)) = A104968(n).
Sum_{k=0..n} T(n, k)^2 = A104969(n).
T(n,k) = Sum_{i=0..n-k} (-2)^i*binomial(k+1,i)*binomial(n-i,k). - Vladimir Kruchinin, Nov 02 2011
Sum_{k=0..floor(n/2)} T(n-k, k) = A078011(n+2). - G. C. Greubel, Jun 09 2021
Showing 1-2 of 2 results.