cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A134844 Numbers k such that k contains no zero but k^2 contains at least one zero.

Original entry on oeis.org

32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99, 138, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 174, 175, 176, 179, 195, 197, 198, 199, 217, 224, 225, 226, 241, 243, 245, 246, 247, 248, 249, 251, 252, 253, 255, 257, 259, 265
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Comments

Contains all numbers with no zero that start with 32. - Robert Israel, Jun 25 2019

Examples

			a(1)=32 because 1024 = 32^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,10);
      if member(0,L) then return false fi;
      L:= convert(n^2,base,10);
      member(0,L)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jun 25 2019
  • Mathematica
    a = {}; Do[Do[Do[k = 100s + 10n + m; w = IntegerDigits[k^2]; If[MemberQ[w, 0], AppendTo[a, k]], {n, 1, 9}], {m, 1, 9}], {s, 0, 9}]; Union[a]
    Select[Range[300],DigitCount[#,10,0]==0&&DigitCount[#^2,10,0]>0&] (* Harvey P. Dale, Mar 20 2012 *)

Extensions

Definition clarified by Harvey P. Dale, Mar 20 2012

A134843 Numbers n not divisible by 10 such that n^2 contains a 0.

Original entry on oeis.org

32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99, 101, 102, 103, 104, 105, 138, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 174, 175, 176, 179, 195, 197, 198, 199, 201, 202, 203, 205, 217, 224, 225, 226, 241, 243, 245, 246, 247
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Examples

			a(1)=32 because 1024=32^2
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[Do[Do[k = 100s + 10n + m; w = IntegerDigits[k^2]; If[MemberQ[w, 0], AppendTo[a, k]], {m, 1, 9}], {n, 0, 9}], {s, 0, 9}]; Union[a]
    Select[Range[300],Mod[#,10]!=0&&DigitCount[#^2,10,0]>0&] (* Harvey P. Dale, Nov 15 2023 *)

A134846 Smallest number k containing no zero digit such that k^2 contains exactly n zeros.

Original entry on oeis.org

32, 245, 448, 3747, 24495, 62498, 248998, 2449552, 6393747, 6244998, 244949995, 498998998, 2449489753, 24498999998, 28284271249, 248997999998, 498998999999, 4989989999997, 24899979999998
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Comments

The corresponding squares are in A134847.
Browkin (see link, p. 29) gives a number without zero digits whose square has 26 zeros: 4472135954999579392819^2 = 20000000000000000000005837591200400708766761. However, he does not claim that it is the smallest such number, so a(26) <= 4472135954999579392819.
Indeed, there are much smaller candidates for a(26), such as 489899998999999999. We also have a(20) <= 49899989999999 and a(21) <= 498998998999998. - Giovanni Resta, Jun 28 2019

Examples

			a(1) = 32 because 32 is the smallest number without zero digits whose square has exactly one zero: 1024.
		

Crossrefs

Extensions

Edited and a(11), a(12), a(13) added by Klaus Brockhaus, Nov 20 2007
a(14)-a(15) from Lars Blomberg, Jun 25 2011
a(16)-a(19) from Giovanni Resta, Jun 28 2019

A134847 Smallest square number with exactly n zero digits whose square root does not contain any zero digits.

Original entry on oeis.org

1024, 60025, 200704, 14040009, 600005025, 3906000004, 62000004004, 6000305000704, 40880000700009, 39000000020004, 60000500050500025, 249000000005004004, 6000000050052001009, 600201000902004000004, 800000000087008020001, 62000004003004008000004
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Comments

a(26) <= 20000000000000000000005837591200400708766761.
For corresponding square roots and more information see A134846.
a(26) <= 240002009020200000020200002000000001. - Giovanni Resta, Jun 28 2019

Examples

			a(1) = 1024 because 1024 is the smallest square with one zero whose square root has no zero: 32.
		

Crossrefs

Extensions

Edited and a(11)-a(13) added by Klaus Brockhaus, Nov 20 2007
a(14)-a(16) from Giovanni Resta, Jun 28 2019

A134848 Number of digits in A134847(n).

Original entry on oeis.org

4, 5, 6, 8, 9, 10, 11, 13, 14, 14, 17, 18, 19, 21, 21, 23, 24, 26, 27
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Comments

a(26)=44

Crossrefs

Extensions

a(11)-a(15) from Lars Blomberg, Jun 25 2011

A134849 Number of nonzero digits in A134847(n).

Original entry on oeis.org

3, 3, 3, 4, 4, 4, 4, 5, 5, 4, 6, 6, 6, 7, 6, 7, 7, 8, 8
Offset: 1

Views

Author

Artur Jasinski, Nov 13 2007

Keywords

Crossrefs

Extensions

a(11)-a(15) from Lars Blomberg, Jun 25 2011
a(16)-a(19) (using A134847 bfile) from Michel Marcus, Aug 17 2020

A135215 Maximal number of zero digits in square of number with n digits and without zero digits.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 10, 10, 12, 13, 15
Offset: 1

Views

Author

Artur Jasinski, Nov 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    (*For a(7) *) mx = 0; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1; If[ile > mx, mx = ile]], {t, 1, Length[w]}], {m, 1, 9}], {n, 1, 9}], {s, 1, 9}], {p, 1, 9}], {r, 1, 9}], {q, 1, 9}], {b, 1, 9}]; mx

Extensions

a(8)-a(11) from Lars Blomberg, Jun 26 2011

A135217 a(n) = smallest number with n+1 digits and without zero digits whose squares have the maximal number of zero digits = A135215(n+1).

Original entry on oeis.org

32, 448, 3747, 62498, 248998, 6244998, 31623251, 498998998, 2449489753, 28284271249
Offset: 2

Views

Author

Artur Jasinski, Nov 23 2007

Keywords

Crossrefs

Extensions

a(8)-a(11) from Lars Blomberg, Jun 26 2011

A135219 a(n) = largest number with n+1 digits and without zero digits whose squares have maximal number of zero digits = A135215(n+1).

Original entry on oeis.org

99, 949, 9798, 62498, 997998, 6244998
Offset: 2

Views

Author

Artur Jasinski, Nov 23 2007

Keywords

Crossrefs

A135216 a(n)= number of numbers with n+1 digits and without zero digits whose squares have maximal number of zero digits = A135215(n+1).

Original entry on oeis.org

18, 3, 13, 1, 7, 1
Offset: 1

Views

Author

Artur Jasinski, Nov 23 2007

Keywords

Examples

			a(1)=18 because we have 18 numbers with 2 digits and without zero digit whose square have maximal possible value 1 zero: 32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99.
a(2)=3 because we have 3 numbers with 3 digits and without zero digit whose square have maximal possible value 3 zeros: 448, 548, 949.
a(3)=13 because we have 13 numbers with 4 digits and without zero digit whose square have maximal possible value 4 zeros: 3747, 3751, 4899, 6245, 6249, 6253, 7746, 7747, 7749, 7751, 7753, 9747, 9798.
a(4)=1 because we have only one number with 5 digits and without zero digit whose square have maximal possible value 6 zeros: 62498.
a(5)=7 because we have 7 numbers with 6 digits and without zero digit whose square have maximal possible value 7 zeros: 248998, 316245, 489898, 498999, 781249, 948951, 997998.
a(6)=1 because we have only one number with 7 digits and without zero digit whose square have maximal possible value 10 zeros: 6244998.
		

Crossrefs

Programs

  • Mathematica
    (*For a(7) *) c = 0; mx = 10; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1], {t, 1, Length[w]}]; If[ile == mx, c = c + 1], {m, 1, 9}], {n, 1, 9}], {s, 1, 9}], {p, 1, 9}], {r, 1, 9}], {q, 1, 9}], {b, 1, 9}]; c (*Artur Jasinski*)
Showing 1-10 of 13 results. Next