cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135351 a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.

Original entry on oeis.org

0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0

Views

Author

Miklos Kristof, Dec 07 2007

Keywords

Comments

Partial sums of A155980 for n > 2. - Klaus Purath, Jan 30 2021

Crossrefs

Cf. A007583, A062092, A087289, A020988 (even bisection), A163834 (odd bisection), A078008, A084247, A181565.

Programs

  • GAP
    List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
  • Magma
    a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
    
  • Maple
    G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
  • Mathematica
    Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
    LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
    
  • Sage
    [(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

G.f.: x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)).
E.g.f.: (exp(2*x) + 3*exp(x) - 7*exp(-x) + 3)/6.
From Paul Curtz, Dec 20 2020: (Start)
a(n) + (period 2 sequence: repeat [1, -2]) = A328284(n+2).
a(n+1) + (period 2 sequence: repeat [-2, 1]) = A001045(n).
a(n+1) + (period 2 sequence: repeat [-1, 0]) = A078008(n).
a(n+1) + (period 2 sequence : repeat [-3, 2]) = -(-1)^n*A084247(n).
a(n+4) = a(n+1) + 7*A001045(n).
a(n+4) + a(n+1) = A181565(n).
a(2*n+2) + a(2*n+3) = A087289(n) = 3*A007583(n).
a(2*n+1) = A163834(n), a(2*n+2) = A020988(n). (End)

Extensions

First part of definition corrected by Klaus Brockhaus, Dec 05 2009