cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A135671 a(n) = ceiling(n - n^(2/3)).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A135672 a(n) = floor(n - n^(2/3)).

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 43, 44, 45
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A346831 Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 2, -1, -2, 1, 1, 0, -6, 0, 1, 4, 9, -4, -10, 0, 1, -1, 0, 15, 0, -15, 0, 1, 14, -1, -46, 19, 34, -19, -2, 1, 1, 0, -28, 0, 70, 0, -28, 0, 1, 40, 81, -88, -196, 56, 150, -8, -36, 0, 1, -1, 0, 45, 0, -210, 0, 210, 0, -45, 0, 1
Offset: 0

Views

Author

Peter Luschny, Sep 11 2021

Keywords

Comments

The tangent matrix M(n, k) is an N X N matrix defined with h = floor((N+1)/2) as:
M[n - k, k + 1] = if n < h then 1 otherwise -1,
M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
for n in [1..N-1] and for k in [0..n-1], and 0 in the main antidiagonal.
The name 'tangent matrix' derives from M(n, k) = signum(tan(Pi*(n + k)/(N + 1))) whenever the right side of this equation is defined.

Examples

			Table starts:
[0]  1;
[1]  0,  1;
[2] -1,  0,   1;
[3]  2, -1,  -2,    1;
[4]  1,  0,  -6,    0,   1;
[5]  4,  9,  -4,  -10,   0,   1;
[6] -1,  0,  15,    0, -15,   0,   1;
[7] 14, -1, -46,   19,  34, -19,  -2,   1;
[8]  1,  0, -28,    0,  70,   0, -28,   0, 1;
[9] 40, 81, -88, -196,  56, 150,  -8, -36, 0, 1.
.
The first few tangent matrices:
1       2          3              4                  5
---------------------------------------------------------------
0;   -1  0;    1  -1  0;    1  -1  -1   0;   1   1  -1  -1   0;
      0  1;   -1   0  1;   -1  -1   0   1;   1  -1  -1   0   1;
               0   1  1;   -1   0   1   1;  -1  -1   0   1   1;
                            0   1   1  -1;  -1   0   1   1   1;
                                             0   1   1   1  -1;
		

Crossrefs

Cf. A135670, A152011, A346837 (generalized tangent matrix).

Programs

  • Julia
    using AbstractAlgebra
    function TangentMatrix(N)
        M = zeros(ZZ, N, N)
        H = div(N + 1, 2)
        for n in 1:N - 1
            for k in 0:n - 1
                M[n - k, k + 1] = n < H ? 1 : -1
                M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
            end
        end
    M end
    function A346831Row(n)
        n == 0 && return [ZZ(1)]
        R, x = PolynomialRing(ZZ, "x")
        S = MatrixSpace(ZZ, n, n)
        M = TangentMatrix(n)
        c = charpoly(R, S(M))
        collect(coefficients(c))
    end
    for n in 0:9 println(A346831Row(n)) end
  • Maple
    TangentMatrix := proc(N) local M, H, n, k;
       M := Matrix(N, N); H := iquo(N + 1, 2);
       for n from 1 to N - 1 do for k from 0 to n - 1 do
           M[n - k, k + 1] := `if`(n < H, 1, -1);
           M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
    od od; M end:
    A346831Row := proc(n) if n = 0 then return 1 fi;
       LinearAlgebra:-CharacteristicPolynomial(TangentMatrix(n), x);
       seq(coeff(%, x, k), k = 0..n) end:
    seq(A346831Row(n), n = 0..10);
  • Mathematica
    TangentMatrix[N_] := Module[{M, H, n, k},
       M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
       For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
          M[[n - k, k + 1]] = If[n < H, 1, -1];
          M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]]; M];
    A346831Row[n_] := Module[{c}, If[n == 0,  Return[{1}]];
    c = CharacteristicPolynomial[TangentMatrix[n], x];
    (-1)^n*CoefficientList[c, x]];
    Table[A346831Row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)

Formula

The rows with even index equal those of A135670.
The determinants of tangent matrices with even dimension are A152011.

A135673 Ceiling(n + n^(2/3)).

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Examples

			a(6) = 10; ceiling(6 + 6^(2/3)) = ceiling(9.30192...) = 10.
		

Crossrefs

Programs

Extensions

More terms from Wesley Ivan Hurt, Nov 01 2013

A135674 Floor(n+n^(2/3)).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 25 2007

Keywords

Crossrefs

Programs

Showing 1-5 of 5 results.