A135705 a(n) = 10*binomial(n,2) + 9*n.
0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- Leo Tavares, Illustration: Diamond Clipped Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
-
Magma
[n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
Mathematica
LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *) Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
-
PARI
a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
Formula
From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
Comments