cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006931 Least Carmichael number with n prime factors, or 0 if no such number exists.

Original entry on oeis.org

561, 41041, 825265, 321197185, 5394826801, 232250619601, 9746347772161, 1436697831295441, 60977817398996785, 7156857700403137441, 1791562810662585767521, 87674969936234821377601, 6553130926752006031481761, 1590231231043178376951698401
Offset: 3

Views

Author

Keywords

Comments

Alford, Grantham, Hayman, & Shallue construct large Carmichael numbers, finding upper bounds for a(3)-a(19565220) and a(10333229505). - Charles R Greathouse IV, May 30 2013

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 269, Pour la Science, Paris 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* Program not suitable to compute more than a few terms *)
    A2997 = Select[Range[1, 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#] ] == 1&];
    (First /@ Split[Sort[{PrimeOmega[#], #}& /@ A2997], #1[[1]] == #2[[1]]&])[[All, 2]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    a(n)=my(p=2,f);forprime(q=3,default(primelimit),forstep(k=p+2,q-2,2,f=factor(k);if(vecmax(f[,2])==1 && #f[,2]==n && Korselt(k,f), return(k)));p=q)
    \\ Charles R Greathouse IV, Apr 25 2012
    
  • PARI
    carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n-1)%(p-1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p-1) == 1, list=concat(list, f(m*p, lcm(l, p-1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
    a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023

Extensions

Corrected by Lekraj Beedassy, Dec 31 2002
More terms from Ralf Stephan, from the Pinch paper, Apr 16 2005
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.
Escape clause added by Jianing Song, Dec 12 2021

A135720 a(n) is the smallest Carmichael number (A002997) with the n-th prime as its smallest prime divisor, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 75361, 29341, 162401, 334153, 1615681, 3581761, 399001, 294409, 252601, 1152271, 104569501, 2508013, 178837201, 6189121, 10267951, 10024561, 14469841, 4461725581, 985052881, 19384289, 23382529, 3828001, 90698401, 84350561, 6733693, 17098369
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			a(2) = 561 because the smallest prime divisor of 561 is 3 which is the second prime.
		

Crossrefs

Extensions

Two missing terms and terms up to a(447) added by Donovan Johnson, Dec 25 2013
a(448)-a(615) in b-file from Max Alekseyev, Mar 11 2018
Escape clause added by Jianing Song, Dec 12 2021

A135721 a(n) is the smallest Carmichael number (A002997) divisible by the n-th prime, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 561, 1729, 6601, 2465, 2821, 29341, 6601, 334153, 62745, 2433601, 74165065, 29341, 8911, 10024561, 10585, 2508013, 55462177, 62745, 46657, 101101, 52633, 84350561, 188461, 278545, 1152271, 18307381, 410041, 2628073, 12261061, 838201
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			561 is the first Carmichael number and its prime factors are 3, 11, 17 (2nd, 5th and 7th primes), so a(2), a(5) and a(7) are equal to 561. - _Michel Marcus_, Nov 07 2013
		

Crossrefs

Programs

  • Mathematica
    c = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[First@ Select[c, Mod[#, Prime@ n] == 0 &], {n, 2, 16}] (* Michael De Vlieger, Aug 28 2015, after Artur Jasinski at A002997 *)
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = my(pn=prime(n),cn = 31*pn); until (isA002997(cn+=2*pn),); cn; \\ Michel Marcus, Nov 07 2013, improved by M. F. Hasler, Apr 14 2015
    
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    a(n,p=prime(n))=my(m=lift(Mod(1/p,p-1)),c=max(m,33)*p,mp=m*p); while(!isprime(c) && !Korselt(c), c+=mp); c \\ Charles R Greathouse IV, Apr 15 2015

Extensions

More terms from Michel Marcus, Nov 07 2013
Escape clause added by Jianing Song, Dec 12 2021
Showing 1-3 of 3 results.