A135860 a(n) = binomial(n*(n+1), n).
1, 2, 15, 220, 4845, 142506, 5245786, 231917400, 11969016345, 706252528630, 46897636623981, 3461014728350400, 281014969393251275, 24894763097057357700, 2389461906843449885700, 247012484980695576597296, 27361230617617949782033713, 3233032526324680287912449550
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..337
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Magma
[Binomial(n*(n+1), n): n in [0..30]]; // G. C. Greubel, Feb 20 2022
-
Mathematica
Table[Binomial[n^2 + n, n], {n, 0, 16}] (* Arkadiusz Wesolowski, Jul 18 2012 *) (* or *) Table[SeriesCoefficient[(1+x)^(n*(n+1)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
PARI
a(n)=binomial(n*(n+1),n) for(n=0,15,print1(a(n),", "))
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k)) for(n=0,15,print1(a(n),", "))
-
Sage
[binomial(n*(n+1), n) for n in (0..30)] # G. C. Greubel, Feb 20 2022
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k). - Paul D. Hanna, Nov 18 2015
a(n) is divisible by (n+1): a(n)/(n+1) = A135861(n).
a(n) is divisible by (n^2+1): a(n)/(n^2+1) = A135862(n).
a(n) = binomial(2*A000217(n),n). - Arkadiusz Wesolowski, Jul 18 2012
a(n) = [x^n] 1/(1 - x)^(n^2+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Feb 08 2019
a(p) == p + 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == (4*p + 1)*(2*p + 1) ( mod p^4 ) for all prime p. Apply Mestrovic, equation 37. - Peter Bala, Feb 27 2020
a(n) = ((n^2 + n)!)/((n^2)! * n!). - Peter Luschny, Feb 27 2020
a(n) = [x^n] (1 + x)^(n*(n+1)). - Vaclav Kotesovec, Aug 06 2025