A135950 Matrix inverse of triangle A022166.
1, -1, 1, 2, -3, 1, -8, 14, -7, 1, 64, -120, 70, -15, 1, -1024, 1984, -1240, 310, -31, 1, 32768, -64512, 41664, -11160, 1302, -63, 1, -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1, 268435456, -534773760, 353730560, -99486720, 12850368, -777240, 21590, -255, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 2, -3, 1; -8, 14, -7, 1; 64, -120, 70, -15, 1; -1024, 1984, -1240, 310, -31, 1; 32768, -64512, 41664, -11160, 1302, -63, 1; -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ...
Links
- G. C. Greubel, Rows n = 0..75 of triangle, flattened
Programs
-
Mathematica
max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *) p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n]; Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* G. C. Greubel, Apr 15 2019 *)
-
PARI
T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1]
Formula
Unsigned column 0 equals A006125(n) = 2^(n*(n-1)/2).
Unsigned column 1 equals A127850(n) = (2^n-1)*2^(n*(n-1)/2)/2^(n-1).
Row sums equal 0^n.
Unsigned row sums equal A028361(n) = Product_{k=0..n} (1+2^k).
T(n,k) = (-1)^(n-k) * A022166(n,k) * 2^binomial(n-k,2) for 0 <= k <= n. - Werner Schulte, Apr 06 2019 [corrected by Werner Schulte, Dec 27 2021]
Sum_{n>=0} Sum_{k=0..n} T(n,k)y^k*x^n/A005329(n) = e(y*x)/e(x) where e(x) = Sum_{n>=0} x^n/A005329(n). - Geoffrey Critzer, Jun 02 2024
Comments