cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066645 a(n) = floor( (4/3)*Pi*n^3 ).

Original entry on oeis.org

0, 4, 33, 113, 268, 523, 904, 1436, 2144, 3053, 4188, 5575, 7238, 9202, 11494, 14137, 17157, 20579, 24429, 28730, 33510, 38792, 44602, 50965, 57905, 65449, 73622, 82447, 91952, 102160, 113097, 124788, 137258, 150532, 164636, 179594, 195432
Offset: 0

Views

Author

Amarnath Murthy, Dec 29 2001

Keywords

Comments

a(n) = A164086(A000578(n)). [Reinhard Zumkeller, Aug 11 2009]
Volume of a sphere of radius n, rounded down.

Crossrefs

Programs

  • Mathematica
    Table[ Floor[(4/3)Pi*n^3], {n, 0, 50} ]
  • Maxima
    A066645(n):=floor((4/3)*%pi*n^3)$
    makelist(A066645(n),n,1,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    { for (n=0, 1000, write("b066645.txt", n, " ", floor((4/3)*Pi*n^3)) ) } \\ Harry J. Smith, Mar 16 2010
    
  • Sage
    n=100 # change n for more values
    [floor(4/3*pi*r^3) for r in [0..n]] # Tom Edgar, Oct 10 2013

Formula

a(n) = floor((4/3)*Pi*n^3).
a(n) = A135973(n) - 1 for n > 0.

Extensions

More terms from Robert G. Wilson v, Jan 03 2002
0 prepended by T. D. Noe, Oct 10 2013

A297839 Numbers k > 0 that set a new record for the closeness of (4/3)*Pi*k^3 to an integer.

Original entry on oeis.org

1, 3, 4, 14, 18, 23, 62, 95, 423, 5339, 12352, 108359, 129805, 5334194, 82007322, 90401717, 199671691, 434184265, 655956850, 44438886071
Offset: 1

Views

Author

Felix Fröhlich, Jan 07 2018

Keywords

Comments

Integer radii such that the volume of the corresponding sphere is closer to an integer than for any smaller integer radius.

Examples

			k       | (4/3)*Pi*k^3                             | Deviation from integer
---------------------------------------------------------------------------
1       |                     4.188790204786390... | 0.188790204786390...
3       |                   113.097335529232556... | 0.097335529232556...
4       |                   268.082573106329023... | 0.082573106329023...
14      |                 11494.040321933856861... | 0.040321933856861...
18      |                 24429.024474314232222... | 0.024474314232222...
23      |                 50965.010421636019109... | 0.010421636019109...
62      |                998305.991926330990581... | 0.008073669009418...
95      |               3591364.001828731970435... | 0.001828731970435...
423     |             317036825.999590816501793... | 0.000409183498206...
5339    |          637482653747.999839504336479... | 0.000160495663520...
12352   |         7894060641354.000003942767448... | 0.000003942767448...
108359  |      5329464512150064.999997849950689... | 0.000000215004931...
129805  |      9161421693208264.000000035388795... | 0.000000035388795...
5334194 | 635762677398025211698.999999995151941... | 0.000000004848058...
		

Crossrefs

Programs

  • PARI
    closeness(n) = my(v=(4/3)*Pi*n^3); if(round(v) > v, return(round(v)-v), return(v-round(v)))
    my(r=1, k=1, c=0); while(1, c=closeness(k); if(c < r, print1(k, ", "); r=c); k++)

Extensions

a(15)-a(19) from Jon E. Schoenfield, Jan 07 2018
a(20) from David Consiglio, Jr., Mar 14 2023
Showing 1-2 of 2 results.