A136033 a(n) = smallest number k such that number of prime factors of 2^k-1 is exactly n (counted with multiplicity).
2, 4, 6, 16, 12, 18, 24, 40, 54, 36, 102, 110, 60, 72, 108, 140, 120, 156, 144, 200, 216, 210, 240, 180, 456, 288, 336, 300, 396, 480, 882, 360, 468, 700
Offset: 1
Programs
-
Maple
N:= 24: # to get a(1) to a(N) unknown:= N: for k from 2 while unknown > 0 do q:= numtheory:-bigomega(2^k-1); if q <= N and not assigned(A[q]) then A[q]:= k; unknown:= unknown - 1; fi od: seq(A[i],i=1..N); # Robert Israel, Oct 24 2014
-
Mathematica
Module[{nn=250,tbl},tbl=Table[{k,PrimeOmega[2^k-1]},{k,nn}];Table[SelectFirst[tbl,#[[2]]==n&],{n,24}]][[;;,1]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, May 25 2025 *)
-
PARI
a(n) = {k = 1; while(bigomega(2^k-1) != n, k++); k;} \\ Michel Marcus, Nov 04 2013
Extensions
a(15)-a(20) from Michel Marcus, Nov 04 2013
a(21)-a(24) from Derek Orr, Oct 23 2014
a(25)-a(34) from Jinyuan Wang, Jun 07 2019