A140359
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
Original entry on oeis.org
1, 1, 6, 11, 26, 51, 106, 211, 426, 851, 1706, 3411, 6826, 13651, 27306, 54611, 109226, 218451, 436906, 873811, 1747626, 3495251, 6990506, 13981011, 27962026, 55924051, 111848106, 223696211, 447392426, 894784851, 1789569706, 3579139411
Offset: 0
-
[(5*2^(n+1) -9 + 5*(-1)^n)/6: n in [0..50]]; // G. C. Greubel, Oct 10 2017
-
Table[(5*2^(n+1) -9 + 5*(-1)^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 10 2017 *)
LinearRecurrence[{2,1,-2},{1,1,6},40] (* Harvey P. Dale, Mar 24 2021 *)
-
for(n=0,50, print1((5*2^(n+1) -9 + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Oct 10 2017
Original entry on oeis.org
0, 1, 1, 3, 5, 9, 15, 27, 49, 91, 169, 317, 599, 1143, 2197, 4251, 8269, 16161, 31711, 62435, 123273, 243963, 483745, 960725, 1910503, 3803295, 7577933, 15109499, 30143973, 60166553, 120136687, 239955563, 479396897, 957961755, 1914577241
Offset: 0
a(n) and the repeated differences in the followup rows are:
0, 1, 1, 3, 5, 9, 15, ...
1, 0, 2, 2, 4, 6, 12, ...
-1, 2, 0, 2, 2, 6, 10, ...
3, -2, 2, 0, 4, 4, 10, ...
-5, 4, -2, 4, 0, 6, 6, ...
9, -6, 6, -4, 6, 0, 12, ...
-15, 12, -10, 10, -6, -12, 0, ...
The main diagonal consists of zeros.
-
I:=[0,1,1,3,5,9]; [n le 6 select I[n] else 3*Self(n-1)-Self(n-2) -3*Self(n-3)+3*Self(n-4)-Self(n-5)-2*Self(n-6): n in [1..30]]; // G. C. Greubel, Jan 15 2018
-
CoefficientList[Series[-x (1 - 2 x - 3 x^4 + x^2)/((1 - x - x^2) (2 x - 1) (1 + x) (x^2 - x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
LinearRecurrence[{3,-1,-3,3,-1,-2}, {0,1,1,3,5,9}, 30] (* G. C. Greubel, Jan 15 2018 *)
-
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -2,-1,3,-3,-1,3]^n*[0;1;1;3;5;9])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A136161
a(n) = 2*a(n-3) - a(n-6), starting a(0..5) = 0, 5, 2, 1, 3, 1.
Original entry on oeis.org
0, 5, 2, 1, 3, 1, 2, 1, 0, 3, -1, -1, 4, -3, -2, 5, -5, -3, 6, -7, -4, 7, -9, -5, 8, -11, -6, 9, -13, -7, 10, -15, -8, 11, -17, -9, 12, -19, -10, 13, -21, -11, 14, -23, -12, 15, -25, -13, 16, -27, -14
Offset: 0
-
I:=[0,5,2,1,3,1]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..60]]; // G. C. Greubel, Dec 26 2023
-
LinearRecurrence[{0,0,2,0,0,-1},{0,5,2,1,3,1},60] (* Harvey P. Dale, Aug 16 2012 *)
Table[PadRight[{n, 5-2*n, 2-n}], {n,0,20}]//Flatten (* _G. C. Greubel, Dec 26 2023 *)
-
Vec(x*(5+2*x+x^2-7*x^3-3*x^4)/((1-x)^2*(1+x+x^2)^2+O(x^99))) \\ Charles R Greathouse IV, Jul 06 2011
-
def a(n): # a = A136161
if n<6: return (0,5,2,1,3,1)[n]
else: return 2*a(n-3) - a(n-6)
[a(n) for n in range(61)] # G. C. Greubel, Dec 26 2023
A136249
a(n)=-a(n-1)+4*a(n-2)+4*a(n-3).
Original entry on oeis.org
4, -2, 1, 7, -11, 43, -59, 187, -251, 763, -1019, 3067, -4091, 12283, -16379, 49147, -65531, 196603, -262139, 786427, -1048571, 3145723, -4194299, 12582907, -16777211, 50331643, -67108859, 201326587, -268435451, 805306363, -1073741819, 3221225467
Offset: 0
-
[2^(n-2)+5*(-1)^n*(1-2^(n-2)): n in [0..40]]; // Vincenzo Librandi, Aug 09 2011
-
LinearRecurrence[{-1,4,4},{4,-2,1},50] (* or *) Table[(5(-2)^n- 40(-1)^n+2^n)/8,{n,50}] (* Harvey P. Dale, Jun 10 2011 *)
Showing 1-4 of 4 results.
Comments