cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138265 Number of upper triangular zero-one matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945, 1704439030, 17003262470, 180011279335, 2015683264820, 23801055350435, 295563725628564, 3850618520827590, 52514066450469255, 748191494586458700, 11115833059268126770
Offset: 0

Views

Author

Vladeta Jovovic, Mar 10 2008, Mar 11 2008

Keywords

Comments

Row sums of A193357.
This is also the number of rigid unlabeled interval orders with n points (see Brightwell-Keller, Theorem 2; or Dukes-Kitaev-Remmel-Steingrímsson, Theorem 8). - N. J. A. Sloane, Dec 04 2011 [Corrected by Vít Jelínek, Sep 04 2014.]
Number of length-n ascent sequences without flat steps (i.e., no two adjacent digits are equal). An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(k)>=0 and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) gives the number of ascents of its argument. [Joerg Arndt, Nov 05 2012]

Examples

			From _Joerg Arndt_, Nov 05 2012: (Start)
The a(4) = 5 such matrices with 4 ones are (dots for zeros):
  1 . . .      1 1 .      1 . 1      1 1 .      1 . .
  . 1 . .      . . 1      . 1 .      . 1 .      . 1 1
  . . 1 .      . . 1      . . 1      . . 1      . . 1
  . . . 1
The a(5)=16 ascent sequences without flat steps are (dots for zeros):
  [ 1]   [ . 1 . 1 . ]
  [ 2]   [ . 1 . 1 2 ]
  [ 3]   [ . 1 . 1 3 ]
  [ 4]   [ . 1 . 2 . ]
  [ 5]   [ . 1 . 2 1 ]
  [ 6]   [ . 1 . 2 3 ]
  [ 7]   [ . 1 2 . 1 ]
  [ 8]   [ . 1 2 . 2 ]
  [ 9]   [ . 1 2 . 3 ]
  [10]   [ . 1 2 1 . ]
  [11]   [ . 1 2 1 2 ]
  [12]   [ . 1 2 1 3 ]
  [13]   [ . 1 2 3 . ]
  [14]   [ . 1 2 3 1 ]
  [15]   [ . 1 2 3 2 ]
  [16]   [ . 1 2 3 4 ]
(End)
		

Crossrefs

Column k=0 of A242153.
Column k=1 of A264909.
Row sums of A137252.

Programs

  • Maple
    g:=sum(product(1-1/(1+x)^i,i=1..n),n=0..35): gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..22);  # Emeric Deutsch, Mar 23 2008
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
         `if`(i=j, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+1))
        end:
    a:= n-> b(n-1, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2012, Jan 14 2015
  • Mathematica
    max = 25; g = Sum[Product[1 - 1/(1 - x)^i, {i, 1, n}], {n, 0, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n] // Abs, {n, 0, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
  • Sage
    # Adaptation of the Maple program by Alois P. Heinz:
    @CachedFunction
    def b(n, i, t):
        if n<1: return 1
        return sum(b(n-1, j, t+(j>i)) for j in range(t+2))
    def a(n):
        if n<1: return 1
        return sum((-1)^(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1))
    [a(n) for n in range(33)]
    # Joerg Arndt, Feb 26 2014

Formula

G.f.: Sum_{n>=0} (Product_{i=1..n} 1-1/(1+x)^i).
G.f.: Sum_{n>=0} (1+x)^(n+1)*Product_{i=1..n} (1-(1+x)^i)^2. Proved by Bringmann-Li-Rhoades, and by Andrews-Jelínek. - Vít Jelínek, Sep 04 2014
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A079144(k). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*A022493(k).
G.f.: B(x/(1+x)) where B(x) is the g.f. of A022493; g.f.: Q(0,u) where u=x/(1+x), Q(k,u) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1,u) )); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/(exp(Pi^2/12)*Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014
From Vít Jelínek, Sep 04 2014: (Start)
For each m, a(5m+4) mod 5 = 0. Conjectured by Andrews-Sellers, and proved by Garvan (see Remark 1.4(ii) in Garvan's paper).
For each m, a(5m+1) mod 5 = a(5m+2) mod 5 = 3*a(5m+3) mod 5. Proved by Garvan (see (1.17) in Garvan's paper).
The limit a(n)/A022493(n) is equal to exp(-Pi^2/6). This corresponds to the asymptotic probability that a random unlabeled interval order is rigid (See Brightwell-Keller; or Jelínek, Fact 5.2). (End)
Conjectural g.f.: 1 + Sum_{n >= 0} n/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A194530. - Peter Bala, Aug 21 2023

Extensions

More terms from Emeric Deutsch, Mar 23 2008

A005321 Upper triangular n X n (0,1)-matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0

Views

Author

Keywords

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column sums of A137252.

Programs

  • Mathematica
    max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
  • PARI
    a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A005327(k+1).
G.f.: Sum_{n >= 0} x^n*Product_{i = 1..n} ((2^i-1)/(1 + (2^i-1)*x)). - Vladeta Jovovic, Mar 10 2008
From Peter Bala, Jul 06 2017: (Start)
Two conjectural continued fractions for the o.g.f.:
1/(1 - x/(1 - x/(1 - 6*x/(1 - 9*x/(1 - 28*x/(1 - 49*x/(1 - ... - 2^(n-1)*(2^n - 1)*x/(1 - (2^n - 1)^2*x/(1 - ...)))))))));
1 + x/(1 - 2*x/(1 - 3*x/(1 - 12*x/(1 - 21*x/(1 - ... - 2^n*(2^n - 1)*x/(1 - (2^(n+1) - 1)*(2^n - 1)*x/(1 - ...))))))). Cf. A289314 and A289315. (End)
a(n) = (-1)^n*Sum_{k=0..n} qS2(n,k)*[k]!*(-1)^k, where qS2(n,k) is the triangle A139382, and [k]! is q-factorial, q=2. - Vladimir Kruchinin, Oct 10 2019
a(n) = 1 + Sum_{k=2..n} binomial(n,k)*Sum{i=2..k} (-1)^i*Product_{j=i+1..k} (2^j - 1). See Greenough. - Michel Marcus, Oct 13 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A357140 Number of n X n triangular (0,1)-matrices with exactly 2n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 0, 0, 1, 26, 865, 39268, 2375965, 185974145, 18337523130, 2227232055239, 327003956573263, 57121908284696448, 11712143532463633752, 2786114854266411595229, 761208643373263480081077, 236761580851204534640426709, 83183218467008383189955036015
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2022

Keywords

Crossrefs

Cf. A137252.

Formula

a(n) = A137252(2n,n).
Showing 1-3 of 3 results.