A137613 Omit the 1's from Rowland's sequence f(n) - f(n-1) = gcd(n,f(n-1)), where f(1) = 7.
5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13, 15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23
Offset: 1
Keywords
Examples
f(n) = 7, 8, 9, 10, 15, 18, 19, 20, ..., so f(n) - f(n-1) = 1, 1, 1, 5, 3, 1, 1, ... and a(n) = 5, 3, ... . From _Vladimir Shevelev_, Mar 03 2010: (Start) a(1) = Lpf(6-1) = 5; a(2) = Lpf(6-2+5) = 3; a(3) = Lpf(6-3+5+3) = 11; a(4) = Lpf(6-4+5+3+11) = 3; a(5) = Lpf(6-5+5+3+11+3) = 23. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
- Jean-Paul Delahaye, Déconcertantes conjectures, Pour la science, 5 (2008), 92-97.
- Brian Hayes, Pumping the Primes, bit-player, 19 August 2015.
- John Moyer, Source code in C and C++ to print this sequence or sorted and unique values from this sequence. [From John Moyer (jrm(AT)rsok.com), Nov 06 2009]
- Ivars Peterson, A New Formula for Generating Primes, The Mathematical Tourist.
- Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc. 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).
- Eric S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
- Eric S. Rowland, A natural prime-generating recurrence, J. of Integer Sequences 11 (2008), Article 08.2.8.
- Eric Rowland, A simple recurrence that produces complex behavior ..., A New Kind of Science blog.
- Eric Rowland, Prime-Generating Recurrence, Wolfram Demonstrations Project, 2008.
- Eric Rowland, A Bizarre Way to Generate Primes, YouTube video, 2023.
- Jeffrey Shallit, Rutgers Graduate Student Finds New Prime-Generating Formula, Recursivity blog.
- Vladimir Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
- Wikipedia, Formula for primes.
Crossrefs
Programs
-
Haskell
a137613 n = a137613_list !! (n-1) a137613_list = filter (> 1) a132199_list -- Reinhard Zumkeller, Nov 15 2013
-
Maple
A137613_list := proc(n) local a, c, k, L; L := NULL; a := 7; for k from 2 to n do c := igcd(k,a); a := a + c; if c > 1 then L:=L,c fi; od; L end: A137613_list(500000); # Peter Luschny, Nov 17 2011
-
Mathematica
f[1] = 7; f[n_] := f[n] = f[n - 1] + GCD[n, f[n - 1]]; DeleteCases[Differences[Table[f[n], {n, 10^6}]], 1] (* Alonso del Arte, Nov 17 2011 *)
-
PARI
ub=1000; n=3; a=9; while(n
Daniel Constantin Mayer, Aug 31 2014 -
Python
from itertools import count, islice from math import gcd def A137613_gen(): # generator of terms a = 7 for n in count(2): if (b:=gcd(a,n)) > 1: yield b a += b A137613_list = list(islice(A137613_gen(),20)) # Chai Wah Wu, Mar 14 2023
Formula
Denote by Lpf(n) the least prime factor of n. Then a(n) = Lpf( 6-n+Sum_{i=1..n-1} a(i) ). - Vladimir Shevelev, Mar 03 2010
Comments