A137688 2^A003056: 2^n appears n+1 times.
1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0
Examples
Triangle T(n,k) begins: 1 2, 2 4, 4, 4 8, 8, 8, 8 16, 16, 16, 16, 16 32, 32, 32, 32, 32, 32 64, 64, 64, 64, 64, 64, 64 - _Philippe Deléham_, Dec 26 2013
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
Programs
-
GAP
Flat(List([0..10],n->List([1..n+1],k->2^n))); # Muniru A Asiru, Oct 23 2018
-
Haskell
a137688 n = a137688_list !! n a137688_list = concat $ zipWith ($) (map replicate [1..]) (map (2^) [0..]) -- Reinhard Zumkeller, Mar 18 2011
-
Maple
seq(seq(2^n,k=1..n+1),n=0..10); # Muniru A Asiru, Oct 23 2018
-
Mathematica
t = {}; Do[r = {}; Do[If[k == 0||k == n, m = 2^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 9}]; t = Flatten[t] (* Vincenzo Librandi, Aug 01 2013 *)
-
PARI
A137688(n)= 1<
-
Python
from math import isqrt def A137688(n): return 1<<(isqrt((n<<3)+1)-1>>1) # Chai Wah Wu, Feb 10 2023
Formula
Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
Viewed as a triangle T(n,k) : T(n,k)=2*T(n-1,k)+2*T(n-1,k-1)-4*T(n-2,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 26 2013
Sum_{n>=0} 1/a(n) = 4. - Amiram Eldar, Aug 16 2022
Comments