A228196
A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.
Original entry on oeis.org
0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1
The start of the sequence as a triangular array read by rows:
0;
1, 2;
4, 3, 4;
9, 7, 7, 8;
16, 16, 14, 15, 16;
25, 32, 30, 29, 31, 32;
36, 57, 62, 59, 60, 63, 64;
Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)).
A007318 (1,1),
A008949 (1,2^n),
A029600 (2,3),
A029618 (3,2),
A029635 (1,2),
A029653 (2,1),
A037027 (Fibonacci(n),1),
A051601 (n,n) n>=0,
A051597 (n,n) n>0,
A051666 (n^2,n^2),
A071919 (1,0),
A074829 (Fibonacci(n), Fibonacci(n)),
A074909 (1,n),
A093560 (3,1),
A093561 (4,1),
A093562 (5,1),
A093563 (6,1),
A093564 (7,1),
A093565 (8,1),
A093644 (9,1),
A093645 (10,1),
A095660 (1,3),
A095666 (1,4),
A096940 (1,5),
A096956 (1,6),
A106516 (3^n,1),
A108561(1,(-1)^n),
A132200 (4,4),
A134636 (2n+1,2n+1),
A137688 (2^n,2^n),
A160760 (3^(n-1),1),
A164844(1,10^n),
A164847 (100^n,1),
A164855 (101*100^n,1),
A164866 (101^n,1),
A172171 (1,9),
A172185 (9,11),
A172283 (-9,11),
A177954 (int(n/2),1),
A193820 (1,2^n),
A214292 (n,-n),
A227074 (4^n,4^n),
A227075 (3^n,3^n),
A227076 (5^n,5^n),
A227550 (n!,n!),
A228053 ((-1)^n,(-1)^n),
A228074 (Fibonacci(n), n).
-
T:= function(n,k)
if k=0 then return n^2;
elif k=n then return 2^n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
T:= proc(n, k) option remember;
if k=0 then n^2
elif k=n then 2^k
else T(n-1, k-1) + T(n-1, k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
-
T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
-
T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
-
def funcL(n):
q = n**2
return q
def funcR(n):
q = 2**n
return q
for n in range (1,9871):
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2-1
j=(t*t+3*t+4)/2-n-1
sum1=0
sum2=0
for m1 in range (1,i+1):
sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
for m2 in range (1,j+1):
sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
sum=sum1+sum2
-
@CachedFunction
def T(n, k):
if (k==0): return n^2
elif (k==n): return 2^n
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
A007664
Reve's puzzle: number of moves needed to solve the Towers of Hanoi puzzle with 4 pegs and n disks, according to the Frame-Stewart algorithm.
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 17, 25, 33, 41, 49, 65, 81, 97, 113, 129, 161, 193, 225, 257, 289, 321, 385, 449, 513, 577, 641, 705, 769, 897, 1025, 1153, 1281, 1409, 1537, 1665, 1793, 2049, 2305, 2561, 2817, 3073, 3329, 3585, 3841, 4097, 4609, 5121, 5633
Offset: 0
- A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math., 8 (1975-1976), 169-176.
- Paul Cull and E. F. Ecklund, On the Towers of Hanoi and generalized Towers of Hanoi problems. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 229-238. MR0725883(85a:68059).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Wood, Towers of Brahma and Hanoi revisited, J. Recreational Math., 14 (1981), 17-24.
- Gheorghe Coserea, Table of n, a(n) for n = 0..10012 (first 1001 terms from M. F. Hasler)
- S. Alejandre, Legend of Towers of Hanoi.
- J.-P. Allouche, Note on the cyclic towers of Hanoi, Theoret. Comput. Sci., 123 (1994), 3-7.
- T. Bousch, La quatrième tour de Hanoi, Bull. Belg. Math. Soc. Simon Stevin 21 (2014) 895-912.
- A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math 8.3 (1975-6), 169-176. (Annotated scanned copy)
- A. M. Hinz, An iterative algorithm for the Tower of Hanoi with four pegs, Computing, June 1989, Volume 42, Issue 2-3, pp. 133-140.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013.
- B. Houston and H. Masum, Explorations in 4-peg Tower of Hanoi. [Paper]
- B. Houston and H. Masum, Explorations in 4-peg Tower of Hanoi. [Web site]
- S. Klavzar et al., Hanoi graphs and some classical numbers.
- S. Klavzar and U. Milutinovic, Simple explicit formulas for the Frame-Stewart's numbers.
- S. Klavzar, U. Milutinovic and C. Petr, On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem, Discrete Appl. Math. 120, 1-3 (2002), 141 - 157.
- Mathnet at U. Toronto, Generalizing the Towers of Hanoi Problem.
- Richard E. Korf and Ariel Felner, Recent Progress in Heuristic Search: a Case Study of the Four-Peg Towers of Hanoi Problem. IJCAI 2007: 2324-2329.
- B. M. Stewart, Advanced Problem 3918, Amer. Math. Monthly, 46 (1939), 363.
- B. M. Stewart & J. S. Frame, Solution to Problem 3918, Amer. Math. Monthly, 48 (1941), 217-219.
- P. Stockmeyer, Variations on the Four-Post Tower of Hanoi Puzzle, Congressus Numerantium 102 (1994), pp. 3-12. [Has extensive bibliography]
- Eric Weisstein's World of Mathematics, Towers of Hanoi.
- Janez Žerovnik, Self Similarities of the Tower of Hanoi Graphs and a proof of the Frame-Stewart Conjecture, arXiv:1601.04298 [math.CO], 2016.
- Index entries for sequences related to Towers of Hanoi
-
a007664 = sum . map (a000079 . a003056) . enumFromTo 0 . subtract 1
-- Reinhard Zumkeller, Feb 17 2013
-
A007664:=proc(n) option remember;min(seq(2*A007664(k)+2^(n-k)-1,k=0..n-1)) end; A007664(0):=0; # M. F. Hasler, Feb 06 2008
A007664 := n -> 1 + (n - 1 - A003056(n)*(A003056(n) - 1)/2)*2^A003056(n); A003056 := n -> round(sqrt(2*n+2))-1; # M. F. Hasler, Feb 06 2008
-
a[n_] := a[n] = Min[ Table[ 2*a[k] + 2^(n-k) - 1, {k, 0, n-1}]]; a[0] = 0; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Dec 06 2011, after M. F. Hasler *)
Join[{0},Accumulate[2^Flatten[Table[PadRight[{},n+1,n],{n,0,12}]]]] (* Harvey P. Dale, Jul 03 2021 *)
-
A007664(n) = (n - 1 - (n=A003056(n))*(n-1)/2)*2^n +1
A003056(n) = (sqrt(2*n+2)-.5)\1 \\ M. F. Hasler, Feb 06 2008
-
print_7664(n,s=0,t=1,c=1,d=1)=while(n-->=0,print1(s+=t,",");c--&next;c=d++;t<<=1)
-
A007664(n,c=1,d=1,t=1)=sum(i=c,n,i>c&(t<<=1)&c+=d++;t) \\ M. F. Hasler, Feb 06 2008
-
from math import isqrt
def A007664(n): return (1<<(r:=(k:=isqrt(m:=n+1<<1))+int(m>=k*(k+1)+1)-1))*(n-1-(r*(r-1)>>1))+1 # Chai Wah Wu, Oct 17 2022
Upper bound updated with a reference by
Max Alekseyev, Nov 23 2008
A140513
Repeat 2^n n times.
Original entry on oeis.org
2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0
-
a140513 n k = a140513_tabl !! (n-1) !! (k-1)
a140513_row n = a140513_tabl !! (n-1)
a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2]
a140513_list = concat a140513_tabl
-- Reinhard Zumkeller, Nov 14 2015
-
t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *)
Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
-
from math import isqrt
def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024
A227075
A triangle formed like Pascal's triangle, but with 3^n on the borders instead of 1.
Original entry on oeis.org
1, 3, 3, 9, 6, 9, 27, 15, 15, 27, 81, 42, 30, 42, 81, 243, 123, 72, 72, 123, 243, 729, 366, 195, 144, 195, 366, 729, 2187, 1095, 561, 339, 339, 561, 1095, 2187, 6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561, 19683, 9843, 4938, 2556, 1578, 1578, 2556, 4938
Offset: 0
Triangle:
1,
3, 3,
9, 6, 9,
27, 15, 15, 27,
81, 42, 30, 42, 81,
243, 123, 72, 72, 123, 243,
729, 366, 195, 144, 195, 366, 729,
2187, 1095, 561, 339, 339, 561, 1095, 2187,
6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 3^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
A227550
A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0
Triangle begins:
1;
1, 1;
2, 2, 2;
6, 4, 4, 6;
24, 10, 8, 10, 24;
120, 34, 18, 18, 34, 120;
720, 154, 52, 36, 52, 154, 720;
5040, 874, 206, 88, 88, 206, 874, 5040;
40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320;
362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
-
a227550 n k = a227550_tabl !! n !! k
a227550_row n = a227550_tabl !! n
a227550_tabl = map fst $ iterate
(\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
([1], a001563_list)
-- Reinhard Zumkeller, Aug 05 2013
-
function T(n,k)
if k eq 0 or k eq n then return Factorial(n);
else return T(n-1,k-1) + T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A228053
A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1.
Original entry on oeis.org
-1, 1, 1, -1, 2, -1, 1, 1, 1, 1, -1, 2, 2, 2, -1, 1, 1, 4, 4, 1, 1, -1, 2, 5, 8, 5, 2, -1, 1, 1, 7, 13, 13, 7, 1, 1, -1, 2, 8, 20, 26, 20, 8, 2, -1, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1, 1, 1, 13, 49, 112, 166, 166, 112
Offset: 0
Triangle begins:
-1,
1, 1,
-1, 2, -1,
1, 1, 1, 1,
-1, 2, 2, 2, -1,
1, 1, 4, 4, 1, 1,
-1, 2, 5, 8, 5, 2, -1,
1, 1, 7, 13, 13, 7, 1, 1,
-1, 2, 8, 20, 26, 20, 8, 2, -1,
1, 1, 10, 28, 46, 46, 28, 10, 1, 1,
-1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1
-
a228053 n k = a228053_tabl !! n !! k
a228053_row n = a228053_tabl !! n
a228053_tabl = iterate (\row@(i:_) -> zipWith (+)
([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1]
-- Reinhard Zumkeller, Aug 08 2013
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
A227074
A triangle formed like Pascal's triangle, but with 4^n on the borders instead of 1.
Original entry on oeis.org
1, 4, 4, 16, 8, 16, 64, 24, 24, 64, 256, 88, 48, 88, 256, 1024, 344, 136, 136, 344, 1024, 4096, 1368, 480, 272, 480, 1368, 4096, 16384, 5464, 1848, 752, 752, 1848, 5464, 16384, 65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536, 262144, 87384, 29160
Offset: 0
Triangle begins:
1,
4, 4,
16, 8, 16,
64, 24, 24, 64,
256, 88, 48, 88, 256,
1024, 344, 136, 136, 344, 1024,
4096, 1368, 480, 272, 480, 1368, 4096,
16384, 5464, 1848, 752, 752, 1848, 5464, 16384,
65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 4^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
A227076
A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1.
Original entry on oeis.org
1, 5, 5, 25, 10, 25, 125, 35, 35, 125, 625, 160, 70, 160, 625, 3125, 785, 230, 230, 785, 3125, 15625, 3910, 1015, 460, 1015, 3910, 15625, 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125, 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
Offset: 0
Triangle begins as:
1;
5, 5;
25, 10, 25;
125, 35, 35, 125;
625, 160, 70, 160, 625;
3125, 785, 230, 230, 785, 3125;
15625, 3910, 1015, 460, 1015, 3910, 15625;
78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125;
390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625;
-
function T(n,k) // T = A227076
if k eq 0 or k eq n then return 5^n;
else return T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2025
-
A227076 := proc(n,k)
if k = 0 or k = n then
5^n ;
elif k < 0 or k > n then
0;
else
procname(n-1,k)+procname(n-1,k-1) ;
end if;
end proc: # R. J. Mathar, Aug 09 2013
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
from sage.all import *
@CachedFunction
def T(n,k): # T = A227076
if k==0 or k==n: return pow(5,n)
else: return T(n-1,k) + T(n-1,k-1)
print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 10 2025
A098355
Multiplication table of the powers of three read by antidiagonals.
Original entry on oeis.org
1, 3, 3, 9, 9, 9, 27, 27, 27, 27, 81, 81, 81, 81, 81, 243, 243, 243, 243, 243, 243, 729, 729, 729, 729, 729, 729, 729, 2187, 2187, 2187, 2187, 2187, 2187, 2187, 2187, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 19683, 19683, 19683, 19683, 19683, 19683
Offset: 0
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
1; 3,3; 9,9,9; 27,27,27,27;
-
Flatten[Table[3^x, {x, 0, 13}, {y, 0, x}]] (* Alonso del Arte, Nov 29 2011 *)
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11
Offset: 0
Showing 1-10 of 11 results.
Comments