cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1

Views

Author

Boris Putievskiy, Aug 15 2013

Keywords

Comments

The third row is (n^4 - n^2 + 24*n + 24)/12.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

Examples

			The start of the sequence as a triangular array read by rows:
   0;
   1,  2;
   4,  3,  4;
   9,  7,  7,  8;
  16, 16, 14, 15, 16;
  25, 32, 30, 29, 31, 32;
  36, 57, 62, 59, 60, 63, 64;
		

Crossrefs

Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).
Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n^2;
        elif k=n then return 2^n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n^2
        elif k=n then 2^k
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
    Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
  • PARI
    T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Python
    def funcL(n):
       q = n**2
       return q
    def funcR(n):
       q = 2**n
       return q
    for n in range (1,9871):
       t=int((math.sqrt(8*n-7) - 1)/ 2)
       i=n-t*(t+1)/2-1
       j=(t*t+3*t+4)/2-n-1
       sum1=0
       sum2=0
       for m1 in range (1,i+1):
          sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
       for m2 in range (1,j+1):
          sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
       sum=sum1+sum2
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n^2
        elif (k==n): return 2^n
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k > 0. [corrected by G. C. Greubel, Nov 12 2019]
Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.
For this sequence L(m)=m^2 and R(m)=2^m.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).
As a triangular array read by rows, T(n,k) = Sum_{i=1..n-k} i^2*C(n-1-i, n-k-i) + Sum_{i=1..k} 2^i*C(n-1-i, k-i); n,k >=0. - Greg Dresden, Aug 06 2022

Extensions

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

A007664 Reve's puzzle: number of moves needed to solve the Towers of Hanoi puzzle with 4 pegs and n disks, according to the Frame-Stewart algorithm.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 17, 25, 33, 41, 49, 65, 81, 97, 113, 129, 161, 193, 225, 257, 289, 321, 385, 449, 513, 577, 641, 705, 769, 897, 1025, 1153, 1281, 1409, 1537, 1665, 1793, 2049, 2305, 2561, 2817, 3073, 3329, 3585, 3841, 4097, 4609, 5121, 5633
Offset: 0

Views

Author

Keywords

Comments

The Frame-Stewart algorithm minimizes the number of moves a(n) needed to first move k disks to an intermediate peg (requiring a(k) moves), then moving the remaining n-k disks to the destination peg without touching the k smallest disks (requiring 2^(n-k)-1 moves) and finally moving the k smaller disks to the destination.
This leads to the given recursive formula a(n) = min{...}. It follows that the sequence of first differences is A137688 = (1,2,2,4,4,4,...) = 2^A003056(n), which in turn gives the explicit formulas for a(n) as partial sums of A137688.
"Numerous others have rediscovered this algorithm over the years [several references omitted]; many of these failed to derive the correct value for the parameter i, most mistakenly thought that they had actually proved optimality and almost none contributed anything new to what was done by Frame and Stewart". [Stockmeyer]
Numbers of the form 2^k+1 appear for n = 2, 3, 4, 6, 8, 11, 15, 15+4 = 19, 19+5 = 24, 24+6 = 30, 30+7 = 37, 37+8 = 45, ... - Max Alekseyev, Feb 06 2008
The Frame-Stewart algorithm indeed gives the optimal solution, i.e., the minimal possible number of moves for the case of four pegs [Bousch, 2014]. - Andrey Zabolotskiy, Sep 18 2017

References

  • A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math., 8 (1975-1976), 169-176.
  • Paul Cull and E. F. Ecklund, On the Towers of Hanoi and generalized Towers of Hanoi problems. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 229-238. MR0725883(85a:68059).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Wood, Towers of Brahma and Hanoi revisited, J. Recreational Math., 14 (1981), 17-24.

Crossrefs

Cf. A007665, A182058, A003056, A000225 (analog for 3 pegs), A137688 (first differences).

Programs

  • Haskell
    a007664 = sum . map (a000079 . a003056) . enumFromTo 0 . subtract 1
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Maple
    A007664:=proc(n) option remember;min(seq(2*A007664(k)+2^(n-k)-1,k=0..n-1)) end; A007664(0):=0; # M. F. Hasler, Feb 06 2008
    A007664 := n -> 1 + (n - 1 - A003056(n)*(A003056(n) - 1)/2)*2^A003056(n); A003056 := n -> round(sqrt(2*n+2))-1; # M. F. Hasler, Feb 06 2008
  • Mathematica
    a[n_] := a[n] = Min[ Table[ 2*a[k] + 2^(n-k) - 1, {k, 0, n-1}]]; a[0] = 0; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Dec 06 2011, after M. F. Hasler *)
    Join[{0},Accumulate[2^Flatten[Table[PadRight[{},n+1,n],{n,0,12}]]]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    A007664(n) = (n - 1 - (n=A003056(n))*(n-1)/2)*2^n +1
    A003056(n) = (sqrt(2*n+2)-.5)\1 \\ M. F. Hasler, Feb 06 2008
    
  • PARI
    print_7664(n,s=0,t=1,c=1,d=1)=while(n-->=0,print1(s+=t,",");c--&next;c=d++;t<<=1)
    
  • PARI
    A007664(n,c=1,d=1,t=1)=sum(i=c,n,i>c&(t<<=1)&c+=d++;t) \\ M. F. Hasler, Feb 06 2008
    
  • Python
    from math import isqrt
    def A007664(n): return (1<<(r:=(k:=isqrt(m:=n+1<<1))+int(m>=k*(k+1)+1)-1))*(n-1-(r*(r-1)>>1))+1 # Chai Wah Wu, Oct 17 2022

Formula

a(n) = min{ 2 a(k) + 2^(n-k) - 1; k < n}, which is always odd. - M. F. Hasler, Feb 06 2008
a(n) = Sum_{i=0..n-1} 2^A003056(i). - Daniele Parisse, May 09 2003
a(n) = 1 + (n + A003056(n) - 1 - A003056(n)*(A003056(n) + 1)/2)*2^A003056(n). - Daniele Parisse, Feb 06 2001
a(n) = 1 + (n - 1 - A003056(n)*(A003056(n) - 1)/2)*2^A003056(n). - Daniele Parisse, Jul 07 2007

Extensions

Edited, corrected and extended by M. F. Hasler, Feb 06 2008
Further edits by N. J. A. Sloane, Feb 08 2008
Upper bound updated with a reference by Max Alekseyev, Nov 23 2008

A140513 Repeat 2^n n times.

Original entry on oeis.org

2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0

Views

Author

Paul Curtz, Jul 01 2008

Keywords

Crossrefs

Programs

  • Haskell
    a140513 n k = a140513_tabl !! (n-1) !! (k-1)
    a140513_row n = a140513_tabl !! (n-1)
    a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2]
    a140513_list = concat a140513_tabl
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Mathematica
    t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *)
    Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
  • Python
    from math import isqrt
    def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024

Formula

a(n) = 2*A137688(n).
a(n) = A018900(n+1) - A059268(n). - Reinhard Zumkeller, Jun 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
T(n,k) = A173786(n-1,k-1) + A173787(n-1,k-1), 1 <= k <= n. (End)
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022

A227075 A triangle formed like Pascal's triangle, but with 3^n on the borders instead of 1.

Original entry on oeis.org

1, 3, 3, 9, 6, 9, 27, 15, 15, 27, 81, 42, 30, 42, 81, 243, 123, 72, 72, 123, 243, 729, 366, 195, 144, 195, 366, 729, 2187, 1095, 561, 339, 339, 561, 1095, 2187, 6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561, 19683, 9843, 4938, 2556, 1578, 1578, 2556, 4938
Offset: 0

Views

Author

T. D. Noe, Aug 01 2013

Keywords

Comments

All rows except the zeroth are divisible by 3. Is there a closed-form formula for these numbers, like for binomial coefficients?
Let b=3 and T(n,k) = A(n-k,k) be the associated reading of the symmetric array A by antidiagonals, then A(n,k) = sum_{r=1..n} b^r*A178300(n-r,k) + sum_{c=1..k} b^c*A178300(k-c,n). Similarly with b=4 and b=5 for A227074 and A227076. - R. J. Mathar, Aug 10 2013

Examples

			Triangle:
1,
3, 3,
9, 6, 9,
27, 15, 15, 27,
81, 42, 30, 42, 81,
243, 123, 72, 72, 123, 243,
729, 366, 195, 144, 195, 366, 729,
2187, 1095, 561, 339, 339, 561, 1095, 2187,
6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561
		

Crossrefs

Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A166060 (row sums: 4*3^n - 3*2^n), A227074 (4^n edges), A227076 (5^n edges).

Programs

  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 3^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]

A227550 A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2013

Keywords

Comments

A003422 gives the second column (after 0).

Examples

			Triangle begins:
       1;
       1,     1;
       2,     2,    2;
       6,     4,    4,    6;
      24,    10,    8,   10,  24;
     120,    34,   18,   18,  34, 120;
     720,   154,   52,   36,  52, 154,  720;
    5040,   874,  206,   88,  88, 206,  874, 5040;
   40320,  5914, 1080,  294, 176, 294, 1080, 5914, 40320;
  362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
		

Crossrefs

Cf. similar triangles with t on the borders: A007318 (t = 1), A028326 (t = 2), A051599 (t = prime(n)), A051601 (t = n), A051666 (t = n^2), A108617 (t = fibonacci(n)), A134636 (t = 2n+1), A137688 (t = 2^n), A227075 (t = 3^n).
Cf. A003422.
Cf. A227791 (central terms), A001563, A074911.

Programs

  • Haskell
    a227550 n k = a227550_tabl !! n !! k
    a227550_row n = a227550_tabl !! n
    a227550_tabl = map fst $ iterate
       (\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
       ([1], a001563_list)
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return Factorial(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
    
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
  • Sage
    def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

From G. C. Greubel, May 02 2021: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(n, n) = n!.
Sum_{k=0..n} T(n, k) = 2^n * (1 +Sum_{j=1..n-1} j*j!/2^j) = A140710(n). (End)

A228053 A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1.

Original entry on oeis.org

-1, 1, 1, -1, 2, -1, 1, 1, 1, 1, -1, 2, 2, 2, -1, 1, 1, 4, 4, 1, 1, -1, 2, 5, 8, 5, 2, -1, 1, 1, 7, 13, 13, 7, 1, 1, -1, 2, 8, 20, 26, 20, 8, 2, -1, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1, 1, 1, 13, 49, 112, 166, 166, 112
Offset: 0

Views

Author

T. D. Noe, Aug 07 2013

Keywords

Comments

This sequence is almost the same as A026637.
T(n,k) = A026637(n-2,k-1) for n > 3, 1 < k < n-1. - Reinhard Zumkeller, Aug 08 2013

Examples

			Triangle begins:
  -1,
  1, 1,
  -1, 2, -1,
  1, 1, 1, 1,
  -1, 2, 2, 2, -1,
  1, 1, 4, 4, 1, 1,
  -1, 2, 5, 8, 5, 2, -1,
  1, 1, 7, 13, 13, 7, 1, 1,
  -1, 2, 8, 20, 26, 20, 8, 2, -1,
  1, 1, 10, 28, 46, 46, 28, 10, 1, 1,
  -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1
		

Crossrefs

Cf. A007318 (Pascal's triangle), A026637 (many terms in common).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A097073 (row sums).
Cf. A227074 (4^n edges), A227075 (3^n edges), A227076 (5^n edges).

Programs

  • Haskell
    a228053 n k = a228053_tabl !! n !! k
    a228053_row n = a228053_tabl !! n
    a228053_tabl = iterate (\row@(i:_) -> zipWith (+)
       ([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1]
      -- Reinhard Zumkeller, Aug 08 2013
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]

A227074 A triangle formed like Pascal's triangle, but with 4^n on the borders instead of 1.

Original entry on oeis.org

1, 4, 4, 16, 8, 16, 64, 24, 24, 64, 256, 88, 48, 88, 256, 1024, 344, 136, 136, 344, 1024, 4096, 1368, 480, 272, 480, 1368, 4096, 16384, 5464, 1848, 752, 752, 1848, 5464, 16384, 65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536, 262144, 87384, 29160
Offset: 0

Views

Author

T. D. Noe, Aug 06 2013

Keywords

Comments

All rows except the zeroth are divisible by 4. Is there a closed-form formula for these numbers, like for binomial coefficients?

Examples

			Triangle begins:
  1,
  4, 4,
  16, 8, 16,
  64, 24, 24, 64,
  256, 88, 48, 88, 256,
  1024, 344, 136, 136, 344, 1024,
  4096, 1368, 480, 272, 480, 1368, 4096,
  16384, 5464, 1848, 752, 752, 1848, 5464, 16384,
  65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536
		

Crossrefs

Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A165665 (row sums: 3*4^n - 2*2^n), A227075 (3^n edges), A227076 (5^n edges).

Programs

  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 4^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]

A227076 A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1.

Original entry on oeis.org

1, 5, 5, 25, 10, 25, 125, 35, 35, 125, 625, 160, 70, 160, 625, 3125, 785, 230, 230, 785, 3125, 15625, 3910, 1015, 460, 1015, 3910, 15625, 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125, 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
Offset: 0

Views

Author

T. D. Noe, Aug 06 2013

Keywords

Comments

All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, as there is for binomial coefficients?

Examples

			Triangle begins as:
       1;
       5,     5;
      25,    10,    25;
     125,    35,    35,  125;
     625,   160,    70,  160,  625;
    3125,   785,   230,  230,  785, 3125;
   15625,  3910,  1015,  460, 1015, 3910, 15625;
   78125, 19535,  4925, 1475, 1475, 4925, 19535, 78125;
  390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625;
		

Crossrefs

Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A083585 (row sums: (8*5^n - 5*2^n)/3), A227074 (4^n edges), A227075 (3^n edges).
Cf. A000351.

Programs

  • Magma
    function T(n,k) // T = A227076
      if k eq 0 or k eq n then return 5^n;
      else return T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2025
    
  • Maple
    A227076 := proc(n,k)
        if k = 0 or k = n then
            5^n ;
        elif k < 0 or k > n then
            0;
        else
            procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc: # R. J. Mathar, Aug 09 2013
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
  • Python
    from sage.all import *
    @CachedFunction
    def T(n,k): # T = A227076
        if k==0 or k==n: return pow(5,n)
        else: return T(n-1,k) + T(n-1,k-1)
    print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 10 2025

Formula

From R. J. Mathar, Aug 09 2013: (Start)
T(n,0) = 5^n.
T(n,1) = 5*A047850(n-1).
T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16).
T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = 20*(1+(-1)^n)*A009969(floor((n-1)/2)) - (3/5)*[n = 0]. - G. C. Greubel, Jan 10 2025

A098355 Multiplication table of the powers of three read by antidiagonals.

Original entry on oeis.org

1, 3, 3, 9, 9, 9, 27, 27, 27, 27, 81, 81, 81, 81, 81, 243, 243, 243, 243, 243, 243, 729, 729, 729, 729, 729, 729, 729, 2187, 2187, 2187, 2187, 2187, 2187, 2187, 2187, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 6561, 19683, 19683, 19683, 19683, 19683, 19683
Offset: 0

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

3^A003056: 3^n appears n+1 times.

Examples

			1; 3,3; 9,9,9; 27,27,27,27;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^x, {x, 0, 13}, {y, 0, x}]] (* Alonso del Arte, Nov 29 2011 *)

A347697 a(n) = max_{k <= n} A347696(k).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11
Offset: 0

Views

Author

N. J. A. Sloane, Oct 11 2021

Keywords

Comments

The n-th run of consecutive equal terms appears to have length A137688(n). - Rémy Sigrist, Oct 11 2021

Crossrefs

Programs

  • C
    See Links section.

Extensions

More terms from Rémy Sigrist, Oct 11 2021
Showing 1-10 of 11 results. Next