Original entry on oeis.org
1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 63, 66, 69, 72, 74, 77, 80, 83, 86, 89, 91, 93, 96, 98, 101, 104, 107, 110, 113, 115, 118, 121, 124, 125, 128, 131, 134, 137, 140, 142, 145, 148, 151, 154, 156, 158, 161
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
z = 800;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, 32, 36, 38, 42, 45, 49, 53, 55, 57, 59, 63, 65, 66, 70, 72, 74, 76, 80, 82, 84, 86, 89, 91, 93, 97, 101, 103, 107, 111, 114, 118, 120, 124, 128, 130, 132, 135, 137, 141, 145, 147, 149, 151, 155, 156, 158, 162, 164
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Original entry on oeis.org
3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, 75, 81, 88, 95, 102, 109, 116, 122, 129, 136, 143, 150, 153, 160, 167, 174, 180, 187, 194, 201, 208, 215, 221, 225, 232, 238, 245, 252, 259, 266, 273, 279, 286, 293, 300, 303, 310, 317, 324, 331, 338, 344, 351, 358
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, 78, 88, 95, 99, 105, 109, 112, 116, 122, 126, 133, 139, 143, 153, 160, 170, 174, 187, 191, 204, 208, 218, 225, 235, 245, 252, 256, 262, 266, 269, 273, 279, 283, 290, 300, 310, 317, 327, 331, 334, 338, 344, 348
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Original entry on oeis.org
1, 3, 7, 9, 13, 15, 17, 21, 22, 26, 28, 30, 34, 36, 40, 42, 45, 47, 49, 53, 55, 59, 61, 63, 66, 68, 72, 74, 78, 80, 82, 86, 88, 91, 93, 95, 99, 101, 105, 107, 109, 112, 114, 118, 120, 124, 126, 128, 132, 133, 137, 139, 141, 145, 147, 151, 153, 156, 158, 160
Offset: 1
(1) v o u = (1, 3, 7, 9, 13, 15, 17, 21, 22, 26, 28, 30, 34, ...) = A356138
(2) v' o u = (2, 4, 8, 10, 14, 16, 18, 23, 25, 29, 31, 33, 37, ...) = A356139
(3) v o u' = (5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, ...) = A356140
(4) v' o u' = (6, 12, 20, 27, 35, 41, 48, 56, 62, 71, 77, 83, 92, ...) = A356141
-
z = 800;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u] ; (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (* A137803 *)
v1 = Complement[Range[Max[v]], v] ; (* A137804 *)
Table[v[[u[[n]]]], {n, 1, z/8}] (* A356138 *)
Table[v1[[u[[n]]]], {n, 1, z/8}] (* A356139 *)
Table[v[[u1[[n]]]], {n, 1, z/8}] (* A356140 *)
Table[v1[[u1[[n]]]], {n, 1, z/8}] (* A356141 *)
Original entry on oeis.org
5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, 89, 97, 103, 111, 116, 122, 130, 135, 143, 149, 155, 162, 168, 176, 181, 189, 195, 200, 208, 214, 222, 227, 233, 241, 246, 254, 260, 266, 273, 279, 287, 292, 300, 306, 312, 319, 325, 333, 338, 344, 352, 357
Offset: 1
(1) v o u = (1, 3, 7, 9, 13, 15, 17, 21, 22, 26, 28, 30, 34, ...) = A356138
(2) v' o u = (2, 4, 8, 10, 14, 16, 18, 23, 25, 29, 31, 33, 37, ...) = A356139
(3) v o u' = (5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, ...) = A356140
(4) v' o u' = (6, 12, 20, 27, 35, 41, 48, 56, 62, 71, 77, 83, 92, ...) = A356141
-
z = 800;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}]; (*A001951*)
u1 = Complement[Range[Max[u]], u] ; (*A001952*)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (*A137803*)
v1 = Complement[Range[Max[v]], v] ; (*A137804*)
Table[v[[u[[n]]]], {n, 1, z/8}] (*A356138 *)
Table[v1[[u[[n]]]], {n, 1, z/8}] (* A356139*)
Table[v[[u1[[n]]]], {n, 1, z/8}] (* A356140 *)
Table[v1[[u1[[n]]]], {n, 1, z/8}] (* A356141 *)
A137804
a(n) = floor(n*(4*sqrt(2)+9)/7).
Original entry on oeis.org
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 134, 136
Offset: 1
-
[Floor(n*(4*Sqrt(2)+9)/7): n in [1..100]]; // G. C. Greubel, Mar 28 2018
-
[seq(floor(n*(4*(sqrt(2))+9)/7),n=1..70)]; # Muniru A Asiru, Mar 29 2018
-
Table[Floor[n*(4*Sqrt[2]+9)/7], {n,1,100}] (* G. C. Greubel, Mar 28 2018 *)
-
for(n=1,100, print1(floor(n*(4*sqrt(2)+9)/7), ", ")) \\ G. C. Greubel, Mar 28 2018
Original entry on oeis.org
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 94, 97, 100, 103, 106, 108, 111, 114, 117, 120, 123, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 159, 162, 165, 168, 171, 173
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, 85, 92, 99, 105, 112, 119, 126, 133, 139, 146, 157, 163, 170, 177, 184, 191, 198, 204, 211, 218, 228, 235, 242, 249, 256, 262, 269, 276, 283, 290, 297, 307, 314, 320, 327, 334, 341, 348, 355, 361, 368, 375, 385, 392
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, 39, 41, 43, 46, 48, 50, 52, 56, 60, 62, 67, 69, 73, 77, 79, 83, 87, 90, 94, 96, 98, 100, 104, 106, 108, 110, 113, 115, 117, 121, 123, 125, 127, 131, 134, 138, 140, 142, 144, 148, 152, 154, 159, 161, 165, 169, 171
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Showing 1-10 of 17 results.
Comments