A255707 Least number k > 0 such that (2*n-1)^k - 2 is prime, or 0 if no such number exists.
0, 2, 1, 1, 1, 4, 1, 1, 6, 1, 1, 24, 1, 2, 2, 1, 1, 2, 2, 1, 4, 1, 1, 2, 1, 8, 4, 1, 12, 4, 1, 1, 8, 3, 1, 2, 1, 1, 2, 38, 1, 4, 1, 4, 2, 1, 2, 4, 747, 1, 4, 1, 1, 2, 1, 1, 10, 1, 2, 2, 2, 6, 42, 2, 1, 2, 1, 2, 10, 1, 1, 4, 2, 16, 50, 1, 1, 2, 22, 1, 2, 38
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..152 (terms 1..143 from Robert Price)
- Carlos Rivera, Puzzle 887. p(n)^c-2 is prime, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
lst = {0}; For[n = 2, n ≤ 143, n++, For[k = 1, k >= 1, k++, If[PrimeQ[(2*n - 1)^k - 2], AppendTo[lst, k]; Break[]]]]; lst
-
PARI
a(n)=if(n==1,return(0));k=1;while(k,if(ispseudoprime((2*n-1)^k-2),return(k));k++) vector(50,n,a(n)) \\ Derek Orr, Mar 03 2015
Formula
a(A098090(n)) = 1. - Michel Marcus, Mar 03 2015
Comments