cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138191 Denominator of (n-1)*n*(n+1)/12.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Mar 04 2008

Keywords

Comments

Proof of 4-periodicity follows from evaluating (n+3)(n+4)(n+5)/12, subtracting (n-1)n(n+1)/12 and getting n^2+4n+5 which is an integer. - R. J. Mathar, Mar 07 2008

Examples

			0, 1/2, 2, 5, 10, 35/2, 28, 42, 60, 165/2, 110, 143, 182, ...
		

Crossrefs

Programs

  • Mathematica
    Table[(n^3-n)/12,{n,120}]//Denominator (* or *) PadRight[{},120,{1,2,1,1}] (* Harvey P. Dale, Apr 15 2019 *)
  • Python
    def A138191(n): return (1,1,2,1)[n&3] # Chai Wah Wu, Apr 25 2024

Formula

From R. J. Mathar, Mar 07 2008: (Start)
a(n) = 1 + (A000292(n-1) mod 2) = a(n-4).
O.g.f.: -1-5/(4(x-1))+1/(4(x+1))-1/(2(x^2+1)). (End)
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(p^e) = 2 if p = 2 and e = 1, and 1 otherwise.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/4^s).
Sum_{k=1..n} a(k) ~ (5/4)*n. (End)

A208950 a(4*n) = n*(16*n^2-1)/3, a(2*n+1) = n*(n+1)*(2*n+1)/6, a(4*n+2) = (4*n+1)*(4*n+2)*(4*n+3)/6.

Original entry on oeis.org

0, 0, 1, 1, 5, 5, 35, 14, 42, 30, 165, 55, 143, 91, 455, 140, 340, 204, 969, 285, 665, 385, 1771, 506, 1150, 650, 2925, 819, 1827, 1015, 4495, 1240, 2728, 1496, 6545, 1785, 3885, 2109, 9139, 2470, 5330, 2870, 12341, 3311, 7095, 3795, 16215, 4324
Offset: 0

Views

Author

Paul Curtz, Mar 03 2012

Keywords

Comments

a(n+2) is divisible by A060819(floor(n/3)).
a(n) is divisible by A176672(floor(n/3)).
Denominator of a(n)/n is of period 24: 1,1,3,4,1,6,1,4,3,1,1,12,1,2,3,4,1,3,1,4,3,2,1,12 (two successive palindromes).
This is the fifth column of the triangle A107711, hence the formula involving gcd(n+2,4) given below follows. - Wolfdieter Lang, Feb 24 2014

Crossrefs

Programs

  • Magma
    [Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
  • Maxima
    A208950(n) := block(
            [a,npr] ,
            if equal(mod(n,4), 0) then (
                    a : n/12*(n^2-1)
            ) else if equal(mod(n,2),0) then (
                    a : (n-1)*n*(n+1)/6
            ) else (
                    npr : (n-1)/2,
                    a : npr*(npr+1)*n/6
            ) ,
            return(a)
    )$ /* R. J. Mathar, Mar 10 2012 */
    
  • PARI
    vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n+1) = A002415(n+1)/A145979(n-1).
a(n) = A051724(n-1) * A051724(n) * A051724(n+1).
a(n) = A060819(n-1) * A060819(n) * A060819(n+1) / 3.
a(n) * a(n+4) = A061037(n+1) * A061037(n+2) * A061037(n+3) / 9.
a(n) = A138190(n)/A000034(n) for n > 0.
a(n) = A000292(n-1)/A176895(n+2) for n > 0.
a(n)/a(n+4) = n*(n^2-1)/((n+3)*(n+4)*(n+5)).
a(n)/a(n+12) = (n-1)*n*(n+1)/((n+11)*(n+12)*(n+13)).
G.f.: (x^2 + x^3 + 5*x^4 + 5*x^5 + 31*x^6 + 10*x^7 + 22*x^8 + 10*x^9 + 31*x^10 + 5*x^11 + 5*x^12 + x^13 + x^14) / ((1-x)^4*(1+x)^4*(1 + 4*x^2 + 6*x^4 + 4*x^6 + x^8)). - R. J. Mathar, Mar 10 2012
From Wolfdieter Lang, Feb 24 2014: (Start)
G.f.: (1 + x^12 + x*(1+x^10) + 5*x^2*(1+x^8) + 5*x^3*(1+x^7) + 31*x^4*(1+x^4) + 10*x^5*(1+x^2) + 22*x^6)/(1-x^4)^4. This is the preceding g.f. rewritten.
a(n) = binomial(n+1,3)*gcd(n+2,4)/4, n >= 0. From the g.f., see a comment above on A107711. (End)
a(n) = (n*(n-1)*((n+1)*(4+2*(-1)^n + (1+(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))))/48. - Luce ETIENNE, Jan 01 2015
Sum_{n>=2} 1/a(n) = 12 - 27*log(2)/2. - Amiram Eldar, Aug 12 2022

A276670 Numerator of (n-1)*n*(n+1)/4.

Original entry on oeis.org

0, 0, 3, 6, 15, 30, 105, 84, 126, 180, 495, 330, 429, 546, 1365, 840, 1020, 1224, 2907, 1710, 1995, 2310, 5313, 3036, 3450, 3900, 8775, 4914, 5481, 6090, 13485, 7440, 8184, 8976, 19635, 10710, 11655, 12654, 27417, 14820, 15990, 17220, 37023, 19866, 21285
Offset: 0

Views

Author

Paul Curtz, Oct 05 2016

Keywords

Comments

Consider the sequence [2/(n+1), autosequence of the second kind] (see A003506), and its successive differences:
2, 1, 2/3, 1/2, 2/5, 1/3, 2/7, 1/4, 2/9, ... (see A026741)
-1, -1/3, -1/6, -1/10, -1/15, -1/21, -1/28, -1/36, -1/45, ... (see A000217)
2/3, 1/6, 1/15, 1/30, 2/105, 1/84, 1/126, 1/180, 2/495, ...
...
Each fraction in the third row is essentially the reciprocal of (n-1)*n*(n+1)/4 (3/2, 6, 15, 30, 105/2, ... ).
The numbers (= 3*A138190) are divisible by
1) -1, 1, 1, 1, 3, 2, 5, 3, 7, ... hence f(n) = 0, 0, 3, 6, 5, 15, 21, 28, 18, ...
2) 1, 1, 3, 3, 5, 5, 7, 7, 9, ... hence g(n) = 0, 0, 1, 2, 3, 6, 15, 12, 14, ...

Crossrefs

Programs

  • Maple
    seq(numer((n^3-n)/4), n=0..100); # Robert Israel, Oct 05 2016
  • Mathematica
    f[n_] := Numerator[(n - 1) n (n + 1)/4]; Array[f, 40, 0] (* Robert G. Wilson v, Oct 05 2016 *)
  • PARI
    concat(vector(2), Vec(3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4) + O(x^30))) \\ Colin Barker, Oct 09 2016

Formula

a(n) = 3*A138190(n), for n>=1.
a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n) = A007531(n+1)/2 if n == 2 (mod 4), otherwise a(n) = A007531(n+1)/4. - Robert Israel, Oct 05 2016
G.f.: 3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4). - Colin Barker, Oct 09 2016
Sum_{n>=2} 1/a(n) = 1 - log(2)/2. - Amiram Eldar, Aug 13 2022

Extensions

More terms from Robert G. Wilson v, Oct 05 2016
Showing 1-3 of 3 results.