cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A340839 Decimal expansion of Mertens constant C(5,1).

Original entry on oeis.org

1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.

Examples

			1.225238438539084580057609774749220527540595509391649938767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)

Crossrefs

Formula

A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).

Extensions

Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A138316 Numerators of the squarefree totient analogs of the harmonic numbers F_n.

Original entry on oeis.org

1, 2, 5, 5, 11, 13, 41, 41, 41, 11, 113, 113, 77, 241, 497, 497, 1009, 1009, 3067, 3067, 3127, 3199, 35549, 35549, 35549, 36209, 36209, 36209, 255443, 262373, 264221, 264221, 266993, 135229, 17048, 17048, 22859, 69347, 139849, 139849, 70271, 35713
Offset: 1

Views

Author

Dick Boland (abstract(AT)imathination.org), Mar 13 2008, Mar 27 2008

Keywords

Comments

F_n-H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens' 3rd constant and gamma is Euler's constant.

Examples

			Numerators of F_n, e.g., F_1 = (1/1), F_2 = (1/1 + 1/1), ... F_11 = (1/1 + 1/1 + 1/2 + 0 + 1/4 + 1/2 + 1/6 + 0 + 0 + 1/4 + 1/10).
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]], {n, 1, 60}]
  • PARI
    a(n) = numerator(sum(k=1, n, if (issquarefree(k), 1/eulerphi(k)))); \\ Michel Marcus, Aug 28 2018

Formula

a(n) = numerator[sum(k=1 to n)mu^2(k)/phi(k)] where mu(k) is the Mobius function and phi(k) is Euler's Totient function.

A138317 Denominators of the squarefree totient analogs of the harmonic numbers F_n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 12, 12, 12, 3, 30, 30, 20, 60, 120, 120, 240, 240, 720, 720, 720, 720, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 55440, 55440, 55440, 27720, 3465, 3465, 4620, 13860, 27720, 27720, 13860, 6930, 3465, 3465, 3465, 6930, 79695, 79695
Offset: 1

Views

Author

Dick Boland (abstract(AT)imathination.org), Mar 13 2008, Mar 27 2008

Keywords

Comments

F_n-H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens' 3rd constant and gamma is Euler's constant.

Examples

			Denominators of F_n, e.g., - F_1 = (1/1), F_2 = (1/1 + 1/1), ... F_11 = (1/1 + 1/1 + 1/2 + 0 + 1/4 + 1/2 + 1/6 + 0 + 0 + 1/4 + 1/10).
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]], {n, 1, 60}]
  • PARI
    a(n) = denominator(sum(k=1, n, if (issquarefree(k), 1/eulerphi(k)))); \\ Michel Marcus, Aug 28 2018

Formula

a(n)=Denominator[sum(k=1 to n)mu^2(k)/phi(k)] where mu(k) is the Mobius function and phi(k) is Euler's Totient function.

A138313 Decimal expansion of constant 'kappa' = lim_{n -> infinity} (F_n - H_n), where H_n are harmonic numbers, F_n are squarefree totient analogs of H_n.

Original entry on oeis.org

7, 5, 5, 3, 6, 6
Offset: 0

Views

Author

Dick Boland (abstract(AT)imathination.org), Mar 13 2008

Keywords

Comments

The squarefree totient analog of the harmonic number F_n is given by F_n = Sum_{k=1..n} mu^2(k)/phi(k) where mu(k) is the Möbius function and phi(k) is Euler's totient function.
Conjectured to be equivalent to Mertens's constant B_3 minus Euler's constant (A138312). B_3 - gamma is given by Sum_{i>=1} log p_i/(p_i*(p_i-1)), where p_i is the i^th prime = Sum_{j>=2} mu(j)*zeta'(j)/zeta(j), mu(j) is the Mobius function, zeta'(j) is the derivative of zeta(j).

Examples

			0.755366...
		

Crossrefs

Cf. A138316, A138317 (numerators and denominators of the squarefree totient analogs of the harmonic numbers).
Cf. A138312 (Mertens's B_3 minus Euler's constant), A083343 (Mertens's B_3), A001620 (Euler's constant).

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` prl = 100000; ts = 0; f = 1; While[f < 100000000000, If[SquareFreeQ[f], ts += N[1/EulerPhi[f], 15]; If[f > prl, Print[{f, ts, hn = N[HarmonicNumber[f], 15], N[ts - hn, 10]}]; prl += 100000]]; f += 1]

Formula

Limit_{n -> infinity} ((Sum_{k=1..n} mu^2(k)/phi(k)) - H_n), where mu(k) is the Möbius function, phi(k) is Euler's totient function and H_n is the n-th harmonic number.

A138320 Numerators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n-H_n.

Original entry on oeis.org

0, 1, 2, 5, 7, 4, 173, 587, 1481, 1859, 20701, 18391, 241393, 275713, 148367, 548423, 2342059, 241321, 41436061, 19263077, 40604659, 43779103, 1009564739, 1907583043, 9002492327, 9603126977, 27322095131, 25887926681, 752184042199
Offset: 1

Views

Author

Dick Boland (abstract(AT)imathination.org), Mar 14 2008, Mar 27 2008

Keywords

Comments

F_n-H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens' 3rd constant and gamma is Euler's constant.

Examples

			Numerators of F_n - H_n, e.g. - F_1 - H_1 = (1/1-1/1), F_2 = ((1/1-1/1) + (1/1-1/2)),...
F_11 = ((1/1-1/1) +(1/1-1/2) +(1/2-1/3) +(0-1/4) +(1/4-1/5) +(1/2-1/6) +(1/6-1/7) +(0-1/8) +(0-1/9) +(1/4-1/10) +(1/10-1/11)).
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]-HarmonicNumber[n]], {n, 1, 60}]
  • PARI
    for(n=1,60, print1(numerator(sum(k=1,n, moebius(k)^2/eulerphi(k)) - sum(j=1,n,1/j)), ", ")) \\ G. C. Greubel, Aug 31 2018

Formula

a(n) = Numerator[(Sum_{k=1..n} mu^2(k)/phi(k)) - H_n] where mu(k) is the Mobius function, phi(k) is Euler's Totient function and H_n is the n-th Harmonic Number.

A138321 Denominators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n - H_n.

Original entry on oeis.org

1, 2, 3, 12, 15, 5, 210, 840, 2520, 2520, 27720, 27720, 360360, 360360, 180180, 720720, 3063060, 340340, 58198140, 29099070, 58198140, 58198140, 1338557220, 2677114440, 13385572200, 13385572200, 40156716600, 40156716600, 1164544781400, 582272390700, 18050444111700, 144403552893600
Offset: 1

Views

Author

Dick Boland (abstract(AT)imathination.org), Mar 14 2008, Mar 27 2008

Keywords

Comments

F_n - H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens's 3rd constant and gamma is Euler's constant.
Original data was given as {1, 1, 12, 24, 240, 80, 560, 3360, 30240, 7560, 831600, 831600, 93600, 21621600, 6177600, 12355200, 2940537600, 980179200, 55870214400, 2234808576, 3724680960, 177365760, 49597067520, 29758240512, 3719780064000} which is in error for this sequence. - G. C. Greubel, Sep 14 2018

Examples

			Denominators of F_n - H_n, e.g., -F_1 - H_1 = (1/1 - 1/1), F_2 = ((1/1 - 1/1) + (1/1 - 1/2)), ...
F_11 = ((1/1 - 1/1) + (1/1 - 1/2) + (1/2 - 1/3) + (0 - 1/4) + (1/4 - 1/5) + (1/2 - 1/6) + (1/6 - 1/7) + (0 - 1/8) + (0 - 1/9) + (1/4 - 1/10) + (1/10 - 1/11)).
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]-HarmonicNumber[n]], {n, 1, 60}]
  • PARI
    for(n=1, 60,print1(denominator(sum(k=1,n, moebius(k)^2/eulerphi(k) ) - sum(j=1, n, 1/j)), ", ")) \\ G. C. Greubel, Sep 14 2018

Formula

a(n) = denominator( (Sum_{k=1..n} mu(k)^2/phi(k)) - H_n) where mu(k) is the Mobius function, phi(k) is Euler's Totient function and H_n is the n-th Harmonic Number.

Extensions

Data replaced by G. C. Greubel, Sep 14 2018

A363368 Decimal expansion of Sum_{primes p} 1/(p*log(p)*log(log(p))).

Original entry on oeis.org

1, 9, 0, 6, 9, 7, 3, 8, 4, 8, 0, 3, 4, 9, 5, 4, 4, 1, 7, 7, 8, 7, 5, 7, 9, 6, 6, 9, 6, 5, 1, 9, 6, 4, 0, 3, 3, 6, 1, 8, 9, 3, 8, 3, 5, 2, 2, 9, 4, 8, 5, 3, 6, 6, 0, 5, 5, 9, 5, 2, 4, 2, 9, 4, 7, 1, 4, 5, 6, 7, 8, 3, 1, 2, 9, 2, 5, 2, 2, 4, 4, 1, 0, 9, 2, 3, 1, 8, 7, 1, 9, 4, 1, 3, 3, 4, 1, 6, 4, 8, 2, 2, 4, 2, 3
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Bill Allombert and confirmed by Pascal Sebah.

Examples

			1.9069738480349544...
		

Crossrefs

Programs

  • PARI
    /* author Bill Allombert */
    \p150
    pz(x, ex=0)=
    {
    my(s=bitprecision(x));
    my(B=s/real(polcoef(x, 0))+ex);
    sum(n=1, B, my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
    }
    my(P=primes([2, 61])); intnum(x=1, [oo, log(67)], (pz(x)-vecsum([p^-x|p<-P]))*intnum(s=0, [oo, 1], (x-1)^s/gamma(1+s))) + vecsum([1/p/log(p)/log(log(p))|p<-P])

A361089 a(n) = smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n.

Original entry on oeis.org

3, 5, 8, 21, 76, 389, 2679, 23969, 269777, 3717613, 61326301, 1188642478, 26651213526, 682263659097, 19720607003199, 637490095320530, 22857266906194526, 902495758030572213, 38993221443197045348, 1833273720522384358862
Offset: 2

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Because lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)) = 2.7977647035208... (see A363078) then a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

Examples

			a(2) = 3 because Sum_{k=2..3} 1/(k*log(log(k))) = 2.18008755... > 2 and Sum_{k=2..2} 1/(k*log(log(k))) = -1.364208386450... < 2.
a(7) = 389 because Sum_{k=2..389} 1/(k*log(log(k))) = 7.000345... > 7 and Sum_{k=2..388} 1/(k*log(log(k))) = 6.99890560988... < 7.
		

Crossrefs

Programs

  • Mathematica
    (*slow procedure*)
    lim = 2; sum = 0; aa = {}; Do[sum = sum + N[1/(k Log[Log[k]]), 100];
     If[sum >= lim, AppendTo[aa, k]; Print[{lim, sum, k}];
      lim = lim + 1], {k, 2, 269777}];aa
    (*quick procedure *)
    aa = {3}; cons = 2.79776470352080492766050456553352884330850083202326989577856315;
    Do[ww = w /. NSolve[LogIntegral[Log[w]] + cons == n, w];
     AppendTo[aa, Round[ww][[1]]], {n, 3, 21}]; aa

Formula

For n >= 3, a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

A363078 Decimal expansion of lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)).

Original entry on oeis.org

2, 7, 9, 7, 7, 6, 4, 7, 0, 3, 5, 2, 0, 8, 0, 4, 9, 2, 7, 6, 6, 0, 5, 0, 4, 5, 6, 5, 5, 3, 3, 5, 2, 8, 8, 4, 3, 3, 0, 8, 5, 0, 0, 8, 3, 2, 0, 2, 3, 2, 6, 9, 8, 9, 5, 7, 7, 8, 5, 6, 3, 1, 5, 0, 0, 5, 0, 6, 4, 3, 2, 8, 9, 3, 6, 2, 4, 5, 4, 5, 9, 4, 8, 3, 6, 8, 6, 8, 2, 5, 4, 8, 1, 8, 2, 9, 5, 4, 1, 9, 2, 5, 5, 0, 8
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.
For the smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n see A361089.

Examples

			2.7977647035208...
		

Crossrefs

A345308 Decimal expansion of Sum_{p primes} log(p) / (p-1)^2.

Original entry on oeis.org

1, 2, 2, 6, 9, 6, 8, 8, 0, 5, 6, 5, 3, 4, 7, 0, 0, 0, 5, 9, 6, 5, 6, 6, 2, 5, 6, 8, 7, 4, 5, 7, 6, 2, 5, 6, 2, 9, 8, 8, 2, 5, 7, 4, 5, 4, 9, 0, 1, 4, 2, 6, 3, 1, 1, 7, 1, 4, 7, 9, 4, 6, 2, 0, 1, 0, 9, 0, 0, 3, 1, 4, 1, 3, 0, 9, 2, 6, 6, 0, 6, 1, 9, 4, 1, 1, 4, 4, 3, 4, 5, 7, 0, 5, 9, 7, 8, 9, 9, 5, 7, 0, 6, 2, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2021

Keywords

Examples

			1.226968805653470005965662568745762562988257454901426311714794620109...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 1/((p - 1)^2); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 25}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 110]], {m, 1000, 5000, 1000}]
Showing 1-10 of 11 results. Next