cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A180598 Digital root of 8n.

Original entry on oeis.org

0, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Period of 9. - Robert G. Wilson v, Sep 20 2010
Essentially the same as A138531. - R. J. Mathar, Jul 09 2011

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[8 n - 1, 9] + 1; f[0] = 0; Array[f, 105, 0] (* Robert G. Wilson v, Sep 20 2010 *)

Formula

G.f.: -x*(9*x^8+x^7+2*x^6+3*x^5+4*x^4+5*x^3+6*x^2+7*x+8)/((x-1)*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Aug 19 2012
a(n) = A010888(8*n). - R. J. Mathar, Aug 28 2025

Extensions

More terms from Robert G. Wilson v, Sep 20 2010

A309818 Digits of the 10-adic integer (987654321/(1-10^9))^(1/3).

Original entry on oeis.org

1, 4, 8, 7, 1, 5, 1, 7, 8, 8, 5, 1, 2, 0, 6, 2, 9, 1, 0, 8, 2, 1, 7, 1, 7, 8, 2, 9, 0, 7, 1, 7, 1, 3, 1, 1, 5, 8, 2, 0, 4, 3, 7, 0, 6, 1, 3, 0, 9, 6, 4, 1, 6, 8, 0, 8, 0, 1, 6, 9, 3, 8, 5, 8, 8, 3, 3, 4, 8, 2, 8, 1, 7, 6, 1, 5, 3, 7, 9, 0, 3, 2, 6, 9, 6, 9, 6, 4, 0, 5, 3, 1, 0, 8, 7, 5, 2, 6, 9, 7
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2019

Keywords

Comments

x = ...113171709287171280192602158871517841.
x^3 = ...987654321987654321987654321987654321.

Examples

			          1^3 == 1         (mod 10).
         41^3 == 21        (mod 10^2).
        841^3 == 321       (mod 10^3).
       7841^3 == 4321      (mod 10^4).
      17841^3 == 54321     (mod 10^5).
     517841^3 == 654321    (mod 10^6).
    1517841^3 == 7654321   (mod 10^7).
   71517841^3 == 87654321  (mod 10^8).
  871517841^3 == 987654321 (mod 10^9).
		

Crossrefs

Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): this sequence (k=3), A309819 (k=7), A309820 (k=9).

Programs

  • PARI
    N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)

A309819 Digits of the 10-adic integer (987654321/(1-10^9))^(1/7).

Original entry on oeis.org

1, 6, 9, 2, 4, 8, 8, 2, 9, 8, 5, 7, 4, 7, 6, 1, 3, 4, 0, 1, 2, 7, 2, 6, 2, 5, 7, 3, 2, 1, 3, 2, 1, 2, 1, 6, 1, 6, 5, 5, 6, 8, 6, 8, 4, 9, 4, 0, 4, 4, 0, 6, 1, 4, 1, 4, 5, 4, 7, 1, 1, 5, 4, 6, 0, 4, 2, 5, 5, 7, 7, 0, 8, 6, 1, 2, 7, 0, 0, 0, 3, 4, 1, 5, 4, 9, 0, 9, 1, 9, 3, 4, 7, 8, 3, 6, 5, 7, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2019

Keywords

Comments

x = ...612123123752627210431674758928842961.
x^7 = ...987654321987654321987654321987654321.

Examples

			          1^7 == 1         (mod 10).
         61^7 == 21        (mod 10^2).
        961^7 == 321       (mod 10^3).
       2961^7 == 4321      (mod 10^4).
      42961^7 == 54321     (mod 10^5).
     842961^7 == 654321    (mod 10^6).
    8842961^7 == 7654321   (mod 10^7).
   28842961^7 == 87654321  (mod 10^8).
  928842961^7 == 987654321 (mod 10^9).
		

Crossrefs

Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): A309818 (k=3), this sequence (k=7), A309820 (k=9).

Programs

  • PARI
    N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N)

A309820 Digits of the 10-adic integer (987654321/(1-10^9))^(1/9).

Original entry on oeis.org

1, 8, 8, 0, 4, 8, 4, 1, 9, 6, 7, 0, 7, 7, 1, 0, 5, 0, 5, 6, 6, 3, 6, 0, 7, 8, 5, 4, 6, 6, 7, 3, 7, 8, 3, 3, 6, 5, 8, 6, 2, 2, 5, 7, 8, 4, 5, 0, 5, 0, 3, 1, 2, 4, 3, 3, 9, 7, 9, 7, 8, 7, 6, 1, 3, 4, 1, 2, 2, 9, 7, 7, 4, 9, 2, 8, 0, 0, 4, 3, 4, 9, 7, 5, 3, 7, 1, 9, 1, 1, 7, 8, 3, 5, 0, 7, 5, 2, 3, 3
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2019

Keywords

Comments

x = ...338737664587063665050177076914840881.
x^9 = ...987654321987654321987654321987654321.

Examples

			          1^9 == 1         (mod 10).
         81^9 == 21        (mod 10^2).
        881^9 == 321       (mod 10^3).
        881^9 == 4321      (mod 10^4).
      40881^9 == 54321     (mod 10^5).
     840881^9 == 654321    (mod 10^6).
    4840881^9 == 7654321   (mod 10^7).
   14840881^9 == 87654321  (mod 10^8).
  914840881^9 == 987654321 (mod 10^9).
		

Crossrefs

Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): A309818 (k=3), A309819 (k=7), this sequence (k=9).

Programs

  • PARI
    N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N)

A262734 Period 16: repeat (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2015

Keywords

Comments

Decimal expansion of 111111112/900000009.
For n which lies in the interval [16*(k-1), 8*(2*k-1)], where k>0 -> pattern {1, 2, 3, 4, 5, 6, 7, 8, 9}; for n which lies in the interval [16*k - 7, 16*k - 1], where k>0 -> pattern {8, 7, 6, 5, 4, 3, 2}.

Crossrefs

Programs

  • Magma
    &cat[[1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2]: n in [0..10]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, 120] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    Vec(-(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)*(x^8+1)) + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • PARI
    111111112/900000009. \\ Altug Alkan, Sep 29 2015
    
  • PARI
    vector(200, n, default(realprecision, n+2); floor(111111112/900000009*10^n)%10) \\ Altug Alkan, Nov 12 2015

Formula

-1 + a(16*(k - 1)) = -2 + a(8*k + 3*(-1)^k - 4) = -3 + a(2*(4*k + (-1)^k - 2)) = -4 + a(8*k + (-1)^k - 4) = -5 + a(4*(2*k - 1)) = -6 + a(8*k - (-1)^k - 4) = -7 + a(-2*(-4*k + (-1)^k + 2)) = -8 + a(8*k - 3*(-1)^k - 4) = -9 + a(8*(2*k - 11)) = 0, for k>0.
a(0) = 1, a(n) = a(n+1) - 1, for 16*(k - 1) <= n < 8*(2*k - 1), and a(n) = a(n + 1) + 1, for 8*(2*k - 1) <= n < 16*k, where k>0.
From Colin Barker, Sep 29 2015: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n>8.
G.f.: -(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(x^8+1)). (End)
Showing 1-5 of 5 results.