A138694 Numbers n such that the set {2*n+p^2, p any prime} contains exactly one prime.
1, 4, 7, 10, 16, 19, 22, 25, 31, 37, 40, 46, 49, 52, 61, 64, 70, 79, 82, 85, 91, 94, 109, 112, 115, 121, 124, 127, 130, 136, 142, 151, 154, 169, 172, 175, 187, 190, 196, 205, 211, 217, 220, 226, 229, 235, 241, 247, 250, 256, 274, 277, 280, 289, 292, 295, 304, 316
Offset: 1
Keywords
Examples
3 is not in the sequence because {6+2^2, 6+3^3, 6+5^2, 6+7^2,..} = {10, 15, 31, 55,..,127,..,367,..} contains the primes 31, 127, 367,..., generated with p=5,11,19... 4 is in the sequence because {8+2^2, 8+3^3, 8+5^2, 8+7^2,..} = {12, 17, 33, 57,...} contains only one prime (that is, 17), generated with p=3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
b = {}; Do[a = {}; Do[If[PrimeQ[2*k + Prime[n]^2], AppendTo[a, k]], {n, 1, 100}]; If[Length[a] < 2, AppendTo[b, a]], {k, 1, 500}]; Union[Flatten[b]]
Extensions
Edited by R. J. Mathar, May 15 2009
Comments