A139174
a(n) = (n!-4)/4.
Original entry on oeis.org
5, 29, 179, 1259, 10079, 90719, 907199, 9979199, 119750399, 1556755199, 21794572799, 326918591999, 5230697471999, 88921857023999, 1600593426431999, 30411275102207999, 608225502044159999
Offset: 4
-
[(Factorial(n)-4)/4: n in [4..25]]; // Vincenzo Librandi, Jul 20 2011
-
Table[(n! - 4)/4, {n, 4, 20}]
A139175
a(n) = (n! - 5)/5.
Original entry on oeis.org
23, 143, 1007, 8063, 72575, 725759, 7983359, 95800319, 1245404159, 17435658239, 261534873599, 4184557977599, 71137485619199, 1280474741145599, 24329020081766399, 486580401635327999
Offset: 5
-
[(Factorial(n)-5)/5: n in [5..25]]; // Vincenzo Librandi, Jul 20 2011
-
Table[(n! - 5)/5, {n, 5, 20}]
-
for(n=5,25, print1((n! -5)/5, ", ")) \\ G. C. Greubel, Oct 18 2018
A139176
a(n) = (n! - 6)/6.
Original entry on oeis.org
0, 3, 19, 119, 839, 6719, 60479, 604799, 6652799, 79833599, 1037836799, 14529715199, 217945727999, 3487131647999, 59281238015999, 1067062284287999, 20274183401471999, 405483668029439999
Offset: 3
-
List([3..25],n->(Factorial(n)-6)/6); # Muniru A Asiru, Oct 20 2018
-
[(Factorial(n)-6)/6: n in [3..25]]; // Vincenzo Librandi, Jul 20 2011
-
seq((factorial(n)-6)/6,n=3..25); # Muniru A Asiru, Oct 20 2018
-
Table[(n! - 6)/6, {n, 3, 20}]
A139177
a(n) = (n! - 7)/7.
Original entry on oeis.org
719, 5759, 51839, 518399, 5702399, 68428799, 889574399, 12454041599, 186810623999, 2988969983999, 50812489727999, 914624815103999, 17377871486975999, 347557429739519999
Offset: 7
-
List([7..25],n->(Factorial(n)-7)/7); # Muniru A Asiru, Oct 20 2018
-
[(Factorial(n)-7)/7: n in [7..25]]; // Vincenzo Librandi, Jul 20 2011
-
seq((factorial(n)-7)/7,n=7..25); # Muniru A Asiru, Oct 20 2018
-
Table[(n! - 7)/7, {n, 7, 20}]
A139183
a(n) = (n! - 8)/8.
Original entry on oeis.org
2, 14, 89, 629, 5039, 45359, 453599, 4989599, 59875199, 778377599, 10897286399, 163459295999, 2615348735999, 44460928511999, 800296713215999, 15205637551103999, 304112751022079999
Offset: 4
-
List([4..25],n->(Factorial(n)-8)/8); # Muniru A Asiru, Oct 20 2018
-
[(Factorial(n)-8)/8: n in [4..25]]; // Vincenzo Librandi, Jul 20 2011
-
seq((factorial(n)-8)/8,n=4..25); # Muniru A Asiru, Oct 20 2018
-
Table[(n! - 8)/8, {n, 4, 20}]
A139184
a(n) = (n! - 9)/9.
Original entry on oeis.org
79, 559, 4479, 40319, 403199, 4435199, 53222399, 691891199, 9686476799, 145297151999, 2324754431999, 39520825343999, 711374856191999, 13516122267647999, 270322445352959999, 5676771352412159999, 124888969753067519999
Offset: 6
-
List([6..25],n->(Factorial(n)-9)/9); # Muniru A Asiru, Oct 20 2018
-
[(Factorial(n)-9)/9: n in [6..25]]; // Vincenzo Librandi, Jul 20 2011
-
seq((factorial(n)-9)/9,n=6..25); # Muniru A Asiru, Oct 20 2018
-
Table[(n! - 9)/9, {n, 6, 20}]
A139173
a(n) = n!/3 - 1.
Original entry on oeis.org
1, 7, 39, 239, 1679, 13439, 120959, 1209599, 13305599, 159667199, 2075673599, 29059430399, 435891455999, 6974263295999, 118562476031999, 2134124568575999, 40548366802943999, 810967336058879999
Offset: 3
-
[Factorial(n)/3 -1: n in [3..25]]; // Vincenzo Librandi, Jul 20 2011
-
Table[(n! - 3)/3, {n, 3, 20}]
-
for(n=3,25, print1((n!-3)/3, ", ")) \\ G. C. Greubel, Oct 18 2018
A139185
a(n) = (n! - 10)/10.
Original entry on oeis.org
11, 71, 503, 4031, 36287, 362879, 3991679, 47900159, 622702079, 8717829119, 130767436799, 2092278988799, 35568742809599, 640237370572799, 12164510040883199, 243290200817663999
Offset: 5
-
List([5..25],n->(Factorial(n)-10)/10); # Muniru A Asiru, Oct 20 2018
-
[(Factorial(n)-10)/10: n in [5..25]]; // Vincenzo Librandi, Jul 20 2011
-
seq((factorial(n)-10)/10,n=5..25); # Muniru A Asiru, Oct 20 2018
-
Table[(n! - 10)/10, {n, 5, 20}]
A290116
Primes of the form k! / 2 - 1.
Original entry on oeis.org
2, 11, 59, 359, 181439, 4111419327088961408862781439999999, 16726263306581903554085031026720375832575999999999
Offset: 1
6! / 2 - 1 = 359, which is prime, so 359 is in the sequence.
7! / 2 - 1 = 2519 = 11 * 229, so 2519 is not in the sequence.
-
Select[Table[k! / 2 - 1, {k, 2, 100}], PrimeQ[#]&]
Showing 1-9 of 9 results.
Comments