A139274 a(n) = n*(8*n-1).
0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0
Examples
a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(8*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
-
Maple
A139274:=n->n*(8*n-1): seq(A139274(n), n=0..100); # Wesley Ivan Hurt, Dec 04 2016
-
Mathematica
CoefficientList[Series[x (9 x + 7)/(1 - x)^3, {x, 0, 43}], x] (* Michael De Vlieger, Jan 11 2020 *) Table[n(8n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,30},50] (* Harvey P. Dale, Apr 01 2024 *)
-
PARI
a(n)=n*(8*n-1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022
Comments