cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A357249 a(n) = A139315(n)*n.

Original entry on oeis.org

2, 6, 24, 60, 360, 840, 10080, 7560, 0, 27720, 332640, 720720, 0, 10810800, 17297280, 36756720, 1102701600, 698377680, 27935107200, 48886437600, 0, 16062686640, 385504479360, 1204701498000, 0, 20238985166400, 4497552259200, 6987268688400, 0, 216605329340400
Offset: 2

Views

Author

J. Lowell, Sep 19 2022

Keywords

Examples

			a(8) = A139315(8)*8 = 1260*8 = 10080.
		

Crossrefs

Formula

a(n) = A129902(A139315(n)).

Extensions

More terms from Michel Marcus, Sep 20 2022

A365965 Numbers k such that A139315(k) = 0 but k is not in A138511.

Original entry on oeis.org

30, 50, 68, 76, 90, 92, 98, 116, 124, 132, 148, 150, 154, 160, 164, 165, 172, 174, 182
Offset: 1

Views

Author

J. Lowell, Sep 23 2023

Keywords

Examples

			30 is not in A138511, but A139315(30)=0.
		

Crossrefs

A337686 a(n) is the least multiplier k such that n*k has twice as many divisors as n.

Original entry on oeis.org

2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 6, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4
Offset: 1

Views

Author

Michel Marcus, Sep 15 2020

Keywords

Comments

The zeros in A139315 are the missing values in this sequence (see A337709).
There are no 1's in this sequence. a(n) = 2 for all odd n and a(n) >= 3 for all even n. - J. Lowell, Sep 15 2020
Empirical observation: A007978(n) - a(n) = 1 for n = 60*A206547(n), = 2 for n = 420*A007310(n), else = 0. - Hugo Pfoertner, Sep 30 2020

Examples

			a(1) = 2 because 1 has 1 divisor, 1*2 has 2 divisors, so 2 is the least multiplier to apply to 1 to get twice as many divisors.
		

Crossrefs

Cf. A000005, A129902, A139315, A337709 (missing values).

Programs

  • Mathematica
    nn = 105; Do[d[i] = DivisorSigma[0, i], {i, 12 nn}]; Reap[Do[m = 2; While[d[m i] != 2 d[i], m++]; Sow[m ], {i, nn}]][[-1, -1]] (* Michael De Vlieger, Jan 10 2022 *)
  • PARI
    a(n) = {my(k=1); while (numdiv(n*k) != 2*numdiv(n), k++); k;}

Formula

a(n) = A129902(n)/n.

A167401 a(n) is the smallest number k such that n*k has twice as many divisors as k.

Original entry on oeis.org

1, 1, 2, 1, 12, 1, 4, 3, 20, 1, 72, 1, 28, 45, 8, 1, 108, 1, 160, 63, 44, 1, 288, 5, 52, 9, 224, 1, 10800, 1, 16, 99, 68, 175, 864, 1, 76, 117, 800, 1, 21168, 1, 352, 675, 92, 1, 1152, 7, 400, 153, 416, 1, 648, 275, 1568, 171, 116, 1, 259200
Offset: 2

Views

Author

J. Lowell, Nov 02 2009

Keywords

Comments

a(n) is 1 for all prime numbers n.
From Robert Israel, Feb 09 2017: (Start)
All prime factors of a(n) divide n.
If n=p^k is a prime power, a(n) = p^(k-1).
If n=p*q with pA006881, a(n) = p^2*q. (End)

Crossrefs

Cf. A139315.

Programs

  • Maple
    A167401 := proc(n) if isprime(n) then 1; else for a from 2 do if numtheory[tau](n*a) = 2*numtheory[tau](a) then return a ; end if; end do ; fi; end: seq(A167401(n),n=2..60) ; # R. J. Mathar, Nov 04 2009
  • Mathematica
    tmd[n_]:=Module[{a=1},While[DivisorSigma[0,a*n]!=2DivisorSigma[0,a],a++];a]; Array[tmd,60,2] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    a(n) = {my(k=1); while (numdiv(n*k) != 2*numdiv(k), k++); k;} \\ Michel Marcus, Feb 10 2017

Extensions

Extended by Ray Chandler, Nov 10 2009
Extended beyond a(10) by R. J. Mathar, Nov 04 2009

A337709 Integers m such that A337686(x) = m has no solution.

Original entry on oeis.org

1, 10, 14, 22, 26, 30, 33, 34, 38, 39, 46, 50, 51, 57, 58, 62, 68, 69, 74, 76, 82, 86, 87, 90, 92, 93, 94, 98, 106, 111, 116, 118, 122, 123, 124, 129, 132, 134, 141, 142, 145, 146, 148, 150, 154, 155, 158, 159, 160, 164, 165, 166, 172, 174, 177, 178, 182, 183, 185
Offset: 1

Views

Author

Michel Marcus, Sep 16 2020

Keywords

Comments

Integers m such that A139315(m) = 0.

Crossrefs

A138511 is a subsequence.

Extensions

More terms from Jinyuan Wang, Sep 30 2020
Missing term a(1)=1 inserted by J. Lowell, Jul 14 2022
Showing 1-5 of 5 results.