cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A139341 Decimal expansion of e^((1+sqrt(5))/2).

Original entry on oeis.org

5, 0, 4, 3, 1, 6, 5, 6, 4, 3, 3, 6, 0, 0, 2, 8, 6, 5, 1, 3, 1, 1, 8, 8, 2, 1, 8, 9, 2, 8, 5, 4, 2, 4, 7, 1, 0, 3, 2, 3, 5, 9, 0, 1, 7, 5, 4, 1, 3, 8, 4, 6, 3, 6, 0, 3, 0, 2, 0, 0, 0, 1, 9, 6, 7, 7, 7, 7, 8, 6, 9, 6, 0, 9, 1, 0, 8, 9, 2, 9, 4, 2, 8, 4, 1, 5, 1, 8, 7, 8, 2, 1, 8, 4, 3, 3, 8, 4, 6, 5, 3, 3, 0, 5, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 14 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			5.04316564336002865131188218928542471032359017541384...
		

Crossrefs

Programs

Formula

From Amiram Eldar, Feb 08 2022: (Start)
Equals exp(A001622).
Equals 1/A139342. (End)

A139345 Decimal expansion of sine of the golden ratio. That is, the decimal expansion of sin((1+sqrt(5))/2).

Original entry on oeis.org

9, 9, 8, 8, 8, 4, 5, 0, 9, 0, 9, 4, 8, 8, 4, 7, 9, 8, 8, 3, 3, 2, 6, 8, 2, 4, 2, 6, 3, 0, 1, 2, 9, 0, 4, 4, 6, 3, 8, 6, 5, 1, 1, 9, 2, 1, 2, 7, 0, 5, 7, 4, 4, 3, 4, 5, 5, 3, 9, 9, 6, 6, 8, 8, 1, 0, 7, 1, 8, 2, 3, 9, 1, 8, 2, 7, 9, 9, 5, 4, 0, 9, 2, 6, 6, 8, 5, 3, 3, 6, 0, 4, 0, 4, 4, 6, 0, 2, 7, 1, 8, 5, 2, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.99888450909488479883326824263012904463865119212705...
		

Crossrefs

Programs

Formula

Equals sin(A001622).
Equals 1/A139350. - Amiram Eldar, Feb 07 2022

Extensions

Leading zero removed by R. J. Mathar, Feb 05 2009

A139346 Decimal expansion of cosine of the golden ratio, negated. That is, the decimal expansion of -cos((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 2, 0, 0, 9, 6, 2, 5, 4, 3, 5, 9, 8, 3, 3, 7, 6, 6, 8, 7, 8, 6, 9, 4, 0, 4, 8, 7, 9, 4, 5, 6, 5, 4, 9, 5, 5, 4, 8, 9, 9, 4, 7, 2, 7, 3, 4, 2, 7, 8, 1, 3, 2, 8, 1, 8, 2, 1, 9, 8, 2, 7, 8, 3, 5, 3, 3, 0, 1, 1, 6, 7, 0, 6, 3, 5, 9, 5, 5, 6, 3, 6, 8, 1, 2, 3, 8, 9, 8, 2, 3, 3, 2, 2, 6, 0, 5, 3, 2, 2, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-0.04722009625435983376687869404879456549554899472734...
		

Crossrefs

Programs

Formula

Equals 1/A139349. - Amiram Eldar, Feb 07 2022

Extensions

Edited by N. J. A. Sloane, Dec 11 2008

A139347 Decimal expansion of negated tangent of the golden ratio. That is, the decimal expansion of -tan((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 5, 3, 8, 0, 0, 7, 8, 2, 4, 9, 3, 2, 7, 4, 6, 4, 8, 5, 8, 6, 2, 8, 1, 1, 7, 0, 3, 2, 5, 8, 2, 5, 5, 9, 7, 8, 8, 1, 2, 4, 3, 6, 7, 4, 6, 4, 8, 2, 6, 0, 8, 6, 3, 7, 0, 7, 5, 6, 8, 9, 4, 5, 9, 9, 4, 5, 9, 8, 7, 2, 7, 5, 9, 3, 2, 8, 2, 0, 2, 6, 8, 0, 0, 3, 5, 4, 7, 7, 5, 6, 0, 6, 9, 6, 3, 4, 2, 5, 8, 1, 4, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-21.15380078249327464858628117032582559788124367464826...
		

Crossrefs

Programs

Formula

Equals tan(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139348.
Equals A139345/A139346. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign added to definition by R. J. Mathar, Feb 05 2009

A139348 Decimal expansion of negated cotangent of the golden ratio. That is, the decimal expansion of -cot((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 7, 2, 8, 2, 8, 6, 6, 4, 7, 9, 4, 4, 8, 1, 1, 8, 9, 3, 5, 6, 5, 0, 9, 6, 0, 6, 2, 1, 6, 3, 3, 4, 2, 0, 0, 5, 6, 1, 0, 5, 7, 2, 2, 5, 5, 6, 5, 3, 3, 0, 9, 7, 7, 2, 9, 9, 2, 5, 3, 2, 4, 7, 9, 8, 7, 7, 2, 2, 1, 4, 5, 2, 5, 6, 8, 8, 1, 6, 8, 7, 9, 8, 8, 7, 5, 0, 5, 2, 9, 9, 3, 8, 8, 0, 7, 0, 2, 1, 5, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.04727282866479448118935650960621633420056105722556...
		

Crossrefs

Programs

Formula

Equals cot(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139347.
Equals A139346/A139345. (End)

Extensions

Added sign in definition. Leading zero dropped by R. J. Mathar, Feb 05 2009

A139349 Decimal expansion of negated secant of the golden ratio. That is, the decimal expansion of -sec((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 7, 7, 4, 2, 4, 0, 0, 6, 3, 6, 6, 1, 4, 4, 4, 0, 8, 7, 2, 8, 0, 4, 0, 4, 0, 9, 3, 7, 1, 3, 0, 2, 1, 3, 3, 0, 7, 1, 8, 5, 3, 5, 5, 3, 6, 4, 1, 7, 4, 0, 6, 1, 7, 5, 4, 3, 5, 6, 5, 6, 6, 7, 8, 9, 4, 6, 1, 6, 1, 8, 5, 2, 9, 6, 3, 3, 7, 1, 6, 9, 2, 4, 2, 6, 8, 3, 7, 9, 4, 9, 2, 4, 6, 5, 3, 3, 1, 8, 7, 3, 3, 6
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			21.17742400636614440872804040937130213307185355364174...
		

Crossrefs

Programs

Formula

Equals sec(A001622).
Equals 1/A139346. - Amiram Eldar, Feb 07 2022

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign in definition added by R. J. Mathar, Feb 05 2009

A139350 Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 7, 3, 6, 6, 1, 4, 6, 5, 2, 2, 5, 4, 8, 9, 6, 1, 6, 7, 1, 1, 3, 5, 1, 7, 0, 5, 5, 8, 7, 7, 9, 4, 4, 6, 1, 5, 3, 1, 8, 0, 6, 6, 2, 4, 2, 8, 2, 0, 2, 8, 2, 4, 0, 4, 9, 7, 6, 6, 5, 7, 8, 8, 2, 6, 9, 7, 8, 7, 7, 5, 5, 0, 9, 6, 1, 7, 2, 9, 4, 7, 0, 3, 9, 9, 5, 8, 1, 1, 1, 3, 6, 1, 9, 2, 6, 8, 8, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.00111673661465225489616711351705587794461531806624...
		

Crossrefs

Programs

Formula

Equals 1/A139345. - Amiram Eldar, Feb 07 2022

Extensions

Edited by Bruno Berselli, Feb 19 2013

A140232 a(n) = ceiling(n*exp((1+sqrt(5))/2)).

Original entry on oeis.org

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 1

Views

Author

Mohammad K. Azarian, May 13 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Ceiling(n*Exp(phi)): n in [1..60]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Ceiling[Exp[GoldenRatio]*Range[60]] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(60, n, ceil(n*exp(phi)) ) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [ceil(n*exp(golden_ratio)) for n in (1..60)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = ceiling(n*A139341). - R. J. Mathar, Feb 06 2009

A328344 Decimal expansion of Sum_{k>=0} L(k)/k!, where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

5, 5, 8, 2, 1, 6, 8, 7, 2, 6, 0, 8, 4, 0, 7, 3, 2, 7, 2, 2, 7, 3, 8, 2, 0, 0, 8, 7, 6, 5, 0, 1, 0, 1, 0, 8, 0, 6, 7, 9, 7, 0, 8, 6, 8, 2, 2, 5, 7, 9, 4, 8, 5, 3, 9, 5, 2, 2, 8, 4, 1, 8, 5, 0, 0, 5, 3, 2, 6, 4, 7, 8, 7, 7, 1, 3, 7, 6, 1, 1, 7, 0, 8, 0, 7, 6, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2019

Keywords

Examples

			5.582168726084073272273820087650101080679708682257948...
		

References

  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, 2nd edition, Wiley, 2017, chapter 13.8, pp. 248-250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[GoldenRatio] + Exp[1 - GoldenRatio], 10, 100][[1]]

Formula

Equals exp(phi) + exp(1-phi), where phi is the golden ratio (A001622).
Equals e * A328495. - Amiram Eldar, Feb 06 2022

A328495 Decimal expansion of Sum_{k>=0} (-1)^k*L(k)/k!, where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

2, 0, 5, 3, 5, 6, 5, 1, 1, 1, 4, 7, 6, 5, 1, 0, 9, 6, 0, 3, 4, 4, 9, 1, 4, 6, 6, 1, 1, 4, 6, 9, 6, 5, 3, 0, 9, 3, 2, 0, 2, 5, 8, 6, 4, 4, 9, 4, 5, 9, 1, 8, 2, 4, 8, 7, 0, 2, 3, 6, 2, 9, 7, 2, 0, 4, 0, 8, 9, 6, 4, 4, 0, 4, 5, 4, 2, 3, 5, 9, 3, 8, 3, 4, 7, 7, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2019

Keywords

Examples

			2.053565111476510960344914661146965309320258644945918...
		

References

  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, 2nd edition, Wiley, 2017, chapter 13.8, pp. 248-250.

Crossrefs

Programs

  • Maple
    Digits := 100: 2*exp(-1/2)*cosh(sqrt(5)/2)*10^86:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 22 2019
  • Mathematica
    RealDigits[Exp[-GoldenRatio] + Exp[GoldenRatio - 1], 10, 100][[1]]

Formula

Equals exp(-phi) + exp(phi-1), where phi is the golden ratio (A001622).
Equals 2*exp(-1/2)*cosh(sqrt(5)/2) = A249455*cosh(phi - 1/2). - Peter Luschny, Oct 22 2019
Equals A328344 / e. - Amiram Eldar, Feb 06 2022
Showing 1-10 of 10 results.