cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139761 a(n) = Sum_{k >= 0} binomial(n,5*k+4).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2008

Keywords

Comments

Sequence is identical to its fifth differences. - Paul Curtz, Jun 18 2008
{A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 28 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^5; see A291000. - Clark Kimberling, Aug 24 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Magma
    I:=[0,0,0,0,1]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015
    
  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[2, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2015
  • Mathematica
    CoefficientList[Series[x^4/((1-2x)(x^4-2x^3+4x^2-3x+1)), {x,0,40}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    LinearRecurrence[{5,-10,10,-5,2}, {0,0,0,0,1}, 35] (* Jean-François Alcover, Feb 14 2018 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n,5*k+4)); \\ Michel Marcus, Dec 21 2015
    
  • PARI
    my(x='x+O('x^100)); concat([0,0,0,0], Vec(-x^4/((2*x-1)*(x^4-2*x^3 +4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015
    
  • SageMath
    def A139761(n): return sum(binomial(n,5*k+4) for k in range(1+n//5))
    [A139761(n) for n in range(41)] # G. C. Greubel, Jan 23 2023

Formula

a(n) = A049016(n-4). - R. J. Mathar, Nov 08 2010
From Paul Curtz, Jun 18 2008: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5).
a(n) = A139398(n+1) - A139398(n). (End)
G.f.: x^4/((1-2*x)*(1-3*x+4*x^2-2*x^3+x^4)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*(n-8)/5))), where phi is the golden ratio, round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 28 2017
a(n+m) = a(n)*H_1(m) + H_4(n)*H_2(m) + H_3(n)*H_3(m) + H_2(n)*H_4(m) + H_1(n)*a(m), where H_1=A139398, H_2=A133476, H_3=A139714, H_4=A139748. - Vladimir Shevelev, Jun 28 2017