A139761 a(n) = Sum_{k >= 0} binomial(n,5*k+4).
0, 0, 0, 0, 1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0
References
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2).
Programs
-
Magma
I:=[0,0,0,0,1]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015
-
Maple
a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[2, 1]: seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2015
-
Mathematica
CoefficientList[Series[x^4/((1-2x)(x^4-2x^3+4x^2-3x+1)), {x,0,40}], x] (* Vincenzo Librandi, Dec 21 2015 *) LinearRecurrence[{5,-10,10,-5,2}, {0,0,0,0,1}, 35] (* Jean-François Alcover, Feb 14 2018 *)
-
PARI
a(n) = sum(k=0, n\5, binomial(n,5*k+4)); \\ Michel Marcus, Dec 21 2015
-
PARI
my(x='x+O('x^100)); concat([0,0,0,0], Vec(-x^4/((2*x-1)*(x^4-2*x^3 +4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015
-
SageMath
def A139761(n): return sum(binomial(n,5*k+4) for k in range(1+n//5)) [A139761(n) for n in range(41)] # G. C. Greubel, Jan 23 2023
Formula
a(n) = A049016(n-4). - R. J. Mathar, Nov 08 2010
From Paul Curtz, Jun 18 2008: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5).
G.f.: x^4/((1-2*x)*(1-3*x+4*x^2-2*x^3+x^4)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*(n-8)/5))), where phi is the golden ratio, round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 28 2017
a(n+m) = a(n)*H_1(m) + H_4(n)*H_2(m) + H_3(n)*H_3(m) + H_2(n)*H_4(m) + H_1(n)*a(m), where H_1=A139398, H_2=A133476, H_3=A139714, H_4=A139748. - Vladimir Shevelev, Jun 28 2017
Comments