A140201 Partial sums of A140081.
0, 1, 2, 4, 4, 5, 6, 8, 8, 9, 10, 12, 12, 13, 14, 16, 16, 17, 18, 20, 20, 21, 22, 24, 24, 25, 26, 28, 28, 29, 30, 32, 32, 33, 34, 36, 36, 37, 38, 40, 40, 41, 42, 44, 44, 45, 46, 48, 48, 49, 50, 52, 52, 53, 54, 56, 56, 57, 58, 60, 60, 61, 62, 64, 64, 65, 66, 68, 68, 69, 70, 72, 72, 73, 74
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[0, 1, 2, 4, 4]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..80]]; // Vincenzo Librandi, Sep 17 2012
-
Maple
A140201:=n->(4*n+1-I^(2*n)+(-I)^(1+n)+I^(1+n))/4: seq(A140201(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
Accumulate[PadRight[{}, 68, {0, 1, 1, 2}]] (* Harvey P. Dale, Aug 19 2011 *)
Formula
From Bruno Berselli, Jan 27 2011: (Start)
G.f.: x*(1+x+2*x^2)/((1+x)*(1+x^2)*(1-x)^2).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + A121262(n+1). (End)
a(n) = n when n+1 is not a multiple of 4, and a(n) = n+1 when n+1 is a multiple of 4. - Dennis P. Walsh, Aug 06 2012
a(n) = (4*n+1-i^(2*n)+(-i)^(1+n)+i^(1+n))/4 where i=sqrt(-1). - Wesley Ivan Hurt, Jun 04 2016
a(n) = n+1-(sign((n+1) mod 4) mod 3). - Wesley Ivan Hurt, Sep 26 2017