A053107
Expansion of 1/(1-8*x)^8.
Original entry on oeis.org
1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (64, -1792, 28672, -286720, 1835008, -7340032, 16777216, -16777216).
-
[8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *)
CoefficientList[Series[1/(1-8x)^8,{x,0,20}],x] (* or *) LinearRecurrence[ {64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216},{1,64,2304,61440,1351680,25952256,449839104,7197425664},20] (* Harvey P. Dale, Jul 19 2018 *)
-
vector(30, n, n--; 8^n*binomial(n+7,7)) \\ G. C. Greubel, Aug 16 2018
-
[lucas_number2(n, 8, 0)*binomial(n,7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
A173155
a(n) = binomial(n + 5, 5) * 8^n.
Original entry on oeis.org
1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
Offset: 0
-
[8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]
A140405
a(n) = binomial(n+6, 6)*5^n.
Original entry on oeis.org
1, 35, 700, 10500, 131250, 1443750, 14437500, 134062500, 1173046875, 9775390625, 78203125000, 604296875000, 4532226562500, 33120117187500, 236572265625000, 1656005859375000, 11385040283203125, 77016448974609375, 513442993164062500, 3377914428710937500
Offset: 0
-
seq(binomial(n+6,6)*5^n,n=0..18);
-
Table[Binomial[n+6,6]5^n,{n,0,20}] (* Harvey P. Dale, Dec 03 2017 *)
A172510
a(n) = binomial(n + 4, 4) * 8^n.
Original entry on oeis.org
1, 40, 960, 17920, 286720, 4128768, 55050240, 692060160, 8304721920, 95965675520, 1074815565824, 11725260718080, 125069447659520, 1308418837053440, 13458022323978240, 136374626216312832, 1363746262163128320, 13477021884906209280, 131775325096860712960
Offset: 0
-
[Binomial(n + 4, 4)*8^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
-
Vec(1 / (1-8*x)^5 + O(x^30)) \\ Colin Barker, Jul 24 2017
A196280
a(n) = binomial(n+9, 9)*8^n.
Original entry on oeis.org
1, 80, 3520, 112640, 2928640, 65601536, 1312030720, 23991418880, 407854120960, 6525665935360, 99190122217472, 1442765414072320, 20198715797012480, 273459536944168960, 3594039628409077760, 46003707243636195328, 575046340545452441600, 7035861107850241638400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824).
-
[Binomial(n+9, 9)*8^n: n in [0..20]];
-
Table[Binomial[n+9,9]8^n,{n,0,20}] (* or *) LinearRecurrence[{80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824},{1,80,3520,112640,2928640,65601536,1312030720,23991418880,407854120960,6525665935360},20] (* Harvey P. Dale, May 13 2017 *)
A197321
a(n) = binomial(n+10, 10)*8^n.
Original entry on oeis.org
1, 88, 4224, 146432, 4100096, 98402304, 2099249152, 40785412096, 734137417728, 12398765277184, 198380244434944, 3029807369551872, 44437174753427456, 628956934971588608, 8625695108181786624, 115009268109090488320, 1495120485418176348160, 18996824991195652423680
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (88,-3520,84480,-1351680,15138816,-121110528,692060160,-2768240640,7381975040,-11811160064,8589934592).
-
[8^n*Binomial(n+10, 10): n in [0..20]]
-
Table[Binomial[n+10,10]8^n,{n,0,20}] (* Harvey P. Dale, Mar 05 2012 *)
Showing 1-6 of 6 results.
Comments