cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001453 Catalan numbers - 1.

Original entry on oeis.org

1, 4, 13, 41, 131, 428, 1429, 4861, 16795, 58785, 208011, 742899, 2674439, 9694844, 35357669, 129644789, 477638699, 1767263189, 6564120419, 24466267019, 91482563639, 343059613649, 1289904147323, 4861946401451, 18367353072151, 69533550916003, 263747951750359
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A001454. Column k=2 of A047874.
A141364 is essentially the same sequence.
All of A000108, A001453, A246604, A273526, A120304, A289615, A289616, A289652, A289653, A289654 are very similar sequences.

Programs

Formula

a(n) = A000108(n) - 1 = binomial(2*n,n)/(n+1) - 1.
D-finite with recurrence: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Sep 04 2013
a(n) = Sum_{k=1..floor(n/2)} (C(n,k)-C(n,k-1))^2. - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n-1} A000245(n-k-1). - John M. Campbell, Dec 28 2016
From Ilya Gutkovskiy, Dec 28 2016: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x) - 1/(1 - x).
E.g.f.: exp(x)*(exp(x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1). (End)
a(n)= 3*Sum_{k=1..n} binomial(2*k-2,k)/(k+1). - Gary Detlefs, Feb 14 2020

Extensions

More terms from James Sellers, Sep 08 2000

A141365 Expansion of (1-5x^2-7x^3-2x^4+x^6)/((1-x)(1-x^3)^2).

Original entry on oeis.org

1, 1, -4, -9, -11, -21, -31, -35, -50, -65, -71, -91, -111, -119, -144, -169, -179, -209, -239, -251, -286, -321, -335, -375, -415, -431, -476, -521, -539, -589, -639, -659, -714, -769, -791, -851, -911, -935, -1000, -1065, -1091, -1161, -1231
Offset: 0

Views

Author

Paul Barry, Jun 27 2008

Keywords

Comments

Hankel transform of A141364.

Crossrefs

Cf. A141352.

Programs

  • Mathematica
    CoefficientList[Series[(1-5x^2-7x^3-2x^4+x^6)/((1-x)(1-x^3)^2),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,2,-2,0,-1,1},{1,1,-4,-9,-11,-21,-31},60] (* Harvey P. Dale, Oct 21 2013 *)

Formula

G.f.: (1-5x^2-7x^3-2x^4+x^6)/(1-x-2x^3+2x^4+x^6-x^7)
a(0)=1, a(1)=1, a(2)=-4, a(3)=-9, a(4)=-11, a(5)=-21, a(6)=-31, a(n)=a(n-1)+ 2*a(n-3)- 2*a(n-4)-a(n-6)+a (n-7). - Harvey P. Dale, Oct 21 2013
Showing 1-2 of 2 results.