A215268 Concatenation of the decimal digits of n^2-1 and n^2.
-10, 1, 34, 89, 1516, 2425, 3536, 4849, 6364, 8081, 99100, 120121, 143144, 168169, 195196, 224225, 255256, 288289, 323324, 360361, 399400, 440441, 483484, 528529, 575576, 624625, 675676, 728729, 783784, 840841, 899900, 960961, 10231024, 10881089
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Programs
-
Magma
[-10] cat [Seqint(Intseq(n^2) cat Intseq(n^2-1)): n in [1..50]]; // Vincenzo Librandi, Jul 04 2018
-
Maple
read("transforms") : A215268 := proc(n) if n = 0 then -10; else digcat2(n^2-1,n^2) ; end if; end proc: # R. J. Mathar, Aug 07 2012 # second Maple program: a:= n-> (s-> parse(cat(s-1, s)))(n^2): seq(a(n), n=0..44); # Alois P. Heinz, Jul 05 2018
-
Mathematica
ccd[n_]:=FromDigits[Join[IntegerDigits[n^2-1],IntegerDigits[n^2]]]; Join[{-10}, Array[ccd,40]] (* Harvey P. Dale, Mar 02 2013 *)
-
PARI
a(n) = eval(Str(n^2-1, n^2)); \\ Michel Marcus, Jul 04 2018
Formula
a(n) = n^2+(n^2-1)*10^floor(log_10((2*n^2+1-(-1)^(2^n))/2)+1). - Luce ETIENNE, Sep 19 2014
Comments