cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A196000 Numbers k such that 90*k + 19 is prime.

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 10, 11, 14, 16, 17, 22, 23, 24, 25, 28, 30, 34, 35, 36, 39, 41, 43, 46, 48, 50, 53, 55, 56, 60, 63, 64, 65, 69, 74, 77, 78, 79, 80, 81, 83, 85, 86, 91, 93, 98, 99, 101, 102, 107, 108, 109, 111, 112, 115, 116
Offset: 1

Views

Author

J. W. Helkenberg, Oct 27 2011

Keywords

Comments

A142322 is a digital root 1 and last digit 9 preserving sequence.

Crossrefs

Programs

  • Maple
    A142322 := proc(n)
            option remember;
            if n = 1 then
                    19 ;
            else
                    a := nextprime(procname(n-1)) ;
                    while (a mod 45) <> 19 do
                            a := nextprime(a) ;
                    end do;
                    return a;
            end if;
    end proc:
    A196000 := proc(n)
            (A142322(n)-19)/90 ;
    end proc:
    seq(A196000(n),n=1..80) ; # R. J. Mathar, Oct 31 2011
  • Mathematica
    Select[Range[0, 120], PrimeQ[90 # + 19] &] (* Ivan Neretin, Apr 27 2017 *)
  • PARI
    is(n)=isprime(90*n+19) \\ Charles R Greathouse IV, Apr 25 2016

Formula

a(n) = (A142322(n) - 19)/90.

A141855 Primes congruent to 8 mod 11.

Original entry on oeis.org

19, 41, 107, 151, 173, 239, 283, 349, 503, 547, 569, 613, 701, 811, 877, 1009, 1031, 1097, 1163, 1229, 1361, 1427, 1471, 1493, 1559, 1669, 1801, 1823, 1867, 1889, 1933, 1999, 2087, 2131, 2153, 2351, 2417, 2549, 2593, 2659, 2791, 2857, 2879, 3011, 3121, 3187
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 19 mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Cf. A142322.

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A142324 Primes congruent to 23 mod 45.

Original entry on oeis.org

23, 113, 293, 383, 563, 653, 743, 1013, 1103, 1193, 1283, 1373, 1553, 1733, 1823, 1913, 2003, 2273, 2543, 2633, 2903, 3083, 3533, 3623, 3803, 4073, 4253, 4523, 4703, 4793, 4973, 5153, 5333, 5693, 5783, 6053, 6143, 6323, 6863, 7043, 7583, 7673, 7853, 8123
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 24n log n. - Charles R Greathouse IV, Jul 02 2016

A142730 Primes congruent to 3 mod 59.

Original entry on oeis.org

3, 239, 593, 829, 947, 1301, 2953, 3307, 3779, 4133, 4723, 5077, 5431, 5903, 6257, 7673, 8263, 8971, 9679, 10151, 10859, 11213, 12157, 12511, 12983, 13219, 13337, 13691, 14281, 14753, 15107, 15461, 16759, 17231, 17467, 17939, 19001, 19237, 19709, 20063, 20771
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 3 mod 118. - Vladimir Joseph Stephan Orlovsky, Jul 14 2011.

Crossrefs

Programs

Formula

a(n) ~ 58n log n. - Charles R Greathouse IV, Jul 02 2016

A142732 Primes congruent to 5 mod 59.

Original entry on oeis.org

5, 241, 359, 1303, 1657, 2011, 2129, 2719, 2837, 3191, 4253, 5197, 5669, 6967, 7321, 7793, 8147, 8501, 8737, 9091, 9209, 10271, 10861, 10979, 11923, 12041, 12277, 13103, 13339, 13457, 13693, 14401, 14519, 15227, 15581, 15817, 16879, 17351, 18059, 18413
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 5 mod 118. - Vladimir Joseph Stephan Orlovsky, Jul 14 2011.

Crossrefs

Programs

Formula

a(n) ~ 58n log n. - Charles R Greathouse IV, Jul 02 2016

A142327 Primes congruent to 29 mod 45.

Original entry on oeis.org

29, 389, 479, 569, 659, 839, 929, 1019, 1109, 1289, 1559, 2099, 2459, 2549, 2729, 2819, 2909, 2999, 3089, 3359, 3449, 3539, 3719, 3989, 4079, 4259, 4349, 4799, 4889, 5519, 5879, 6329, 6599, 6689, 6779, 6869, 6959, 7229, 7499, 7589, 7949, 8039, 8219, 8669
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 24n log n. - Charles R Greathouse IV, Jul 02 2016

A142858 Primes congruent to 60 mod 61.

Original entry on oeis.org

487, 853, 1097, 1951, 2683, 2927, 3049, 3659, 4391, 4513, 6221, 6343, 6709, 8539, 8783, 10247, 10369, 10613, 10979, 11467, 11833, 12809, 13297, 13907, 14029, 14639, 15493, 15737, 15859, 16103, 18787, 19031, 19763, 20129, 20983, 21227, 22447, 22691, 23057
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 60n log n. - Charles R Greathouse IV, Jul 03 2016

A142786 Primes congruent to 7 mod 60.

Original entry on oeis.org

7, 67, 127, 307, 367, 487, 547, 607, 727, 787, 907, 967, 1087, 1327, 1447, 1567, 1627, 1747, 1867, 1987, 2287, 2347, 2467, 2647, 2707, 2767, 2887, 3067, 3187, 3307, 3547, 3607, 3727, 3847, 3907, 3967, 4027, 4327, 4447, 4507, 4567, 4987, 5107, 5167, 5227
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Comment from Joshua S.M. Weiner, Oct 12 2012 (Start)
Intersection of A068229 and A141882. Subsequence of A132231.
Congruence classes of primes mod 60: A088955 (1), (this sequence 7), A117047 (11), A142787 (13), A142788 (17), A142789 (19), A142790 (23), A142791 (29), A142792 (31), A142793 (37), A142794 (41), A142795 (43), A142796 (47), A142797 (49), A142798 (53), A142799 (59). (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | p mod 60 eq 7 ]; // Vincenzo Librandi, Sep 04 2012
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 60] == 7 &] (* T. D. Noe, Oct 12 2012 *)
    Select[Range[7,5300,60],PrimeQ] (* Harvey P. Dale, Nov 21 2018 *)
Showing 1-8 of 8 results.