cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143201 Product of distances between prime factors in factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 3, 1, 1, 2, 1, 4, 5, 10, 1, 2, 1, 12, 1, 6, 1, 6, 1, 1, 9, 16, 3, 2, 1, 18, 11, 4, 1, 10, 1, 10, 3, 22, 1, 2, 1, 4, 15, 12, 1, 2, 7, 6, 17, 28, 1, 6, 1, 30, 5, 1, 9, 18, 1, 16, 21, 12, 1, 2, 1, 36, 3, 18, 5, 22, 1, 4, 1, 40, 1, 10, 13, 42, 27, 10, 1, 6, 7, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

a(n) is the product of the sum of 1 and first differences of prime factors of n with multiplicity, with a(n) = 1 for n = 1 or prime n. - Michael De Vlieger, Nov 12 2023.
a(A007947(n)) = a(n);
A006093 and A001747 give record values and where they occur:
A006093(n)=a(A001747(n+1)) for n>1.
a(n) = 1 iff n is a prime power: a(A000961(n))=1;
a(n) = 2 iff n has exactly 2 and 3 as prime factors:
a(A033845(n))=2;
a(n) = 3 iff n is in A143202;
a(n) = 4 iff n has exactly 2 and 5 as prime factors:
a(A033846(n))=4;
a(n) = 5 iff n is in A143203;
a(n) = 6 iff n is in A143204;
a(n) = 7 iff n is in A143205;
a(n) <> A006512(k)+1 for k>1.
a(A033849(n))=3; a(A033851(n))=3; a(A033850(n))=5; a(A033847(n))=6; a(A033848(n))=10. [Reinhard Zumkeller, Sep 19 2011]

Examples

			a(86) = a(43*2) = 43-2+1 = 42;
a(138) = a(23*3*2) = (23-3+1)*(3-2+1) = 42;
a(172) = a(43*2*2) = (43-2+1)*(2-2+1) = 42;
a(182) = a(13*7*2) = (13-7+1)*(7-2+1) = 42;
a(276) = a(23*3*2*2) = (23-3+1)*(3-2+1)*(2-2+1) = 42;
a(330) = a(11*5*3*2) = (11-5+1)*(5-3+1)*(3-2+1) = 42.
		

Crossrefs

Programs

  • Haskell
    a143201 1 = 1
    a143201 n = product $ map (+ 1) $ zipWith (-) (tail pfs) pfs
       where pfs = a027748_row n
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    Table[Times@@(Differences[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[ n]]]+1),{n,100}] (* Harvey P. Dale, Dec 07 2011 *)

Formula

a(n) = f(n,1,1) where f(n,q,y) = if n=1 then y else if q=1 then f(n/p,p,1)) else f(n/p,p,y*(p-q+1)) with p = A020639(n) = smallest prime factor of n.

A033850 Numbers whose prime factors are 3 and 7.

Original entry on oeis.org

21, 63, 147, 189, 441, 567, 1029, 1323, 1701, 3087, 3969, 5103, 7203, 9261, 11907, 15309, 21609, 27783, 35721, 45927, 50421, 64827, 83349, 107163, 137781, 151263, 194481, 250047, 321489, 352947, 413343, 453789, 583443, 750141, 964467
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k)/k = 4/7, where phi is the Euler totient function A000010. - Lekraj Beedassy, Jul 18 2008
Subsequence of A143203. - Reinhard Zumkeller, Sep 13 2011

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 189, p. 57, Ellipses, Paris 2008.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033850 n = a033850_list !! (n-1)
    a033850_list = f (singleton (3*7)) where
       f s = m : f (insert (3*m) $ insert (7*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    Select[Range[10^6],Union[FactorInteger[#][[;;,1]]]=={3,7}&] (* Harvey P. Dale, Mar 01 2023 *)

Formula

A143201(a(n)) = 5. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

Extensions

Offset fixed by Reinhard Zumkeller, Sep 13 2011

A143206 Product of the n-th cousin prime pair.

Original entry on oeis.org

21, 77, 221, 437, 1517, 2021, 4757, 6557, 9797, 11021, 12317, 16637, 27221, 38021, 50621, 53357, 77837, 95477, 99221, 123197, 145157, 159197, 194477, 210677, 216221, 239117, 250997, 378221, 416021, 455621, 549077, 576077, 594437, 680621
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Intersection of A143203 and A001358.
Sum_{n>=2} 1/a(n) > 0.02187310784. - R. J. Mathar, Jan 23 2013

Examples

			a(1) = 3*7 = 3*(3+4) = 21;
a(2) = 7*11 = 7*(7+4) = 77;
a(3) = 13*17 = 13*(13+4) = 221;
a(4) = 19*23 = 19*(19+4) = 437.
		

Crossrefs

Programs

  • Haskell
    a143206 n = a143206_list !! (n-1)
    a143206_list = (3*7) : f a000040_list where
       f (p:ps@(p':_)) | p'-p == 4 = (p*p') : f ps
                       | otherwise = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [(p*(p+4)): p in PrimesUpTo(1000)| IsPrime(p+4)]; // Vincenzo Librandi, Jan 04 2018
    
  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {4}]; Select[ Range@ 700000, fQ] (* Robert G. Wilson v, Feb 08 2012 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(q=p+4), print1(p*q, ", "))); \\ Michel Marcus, Jan 04 2018

Formula

a(n) = A023200(n)*A046132(n).

A195106 Numbers with largest and smallest prime factors differing by 4.

Original entry on oeis.org

21, 63, 77, 105, 147, 189, 221, 315, 437, 441, 525, 539, 567, 735, 847, 945, 1029, 1323, 1517, 1575, 1701, 2021, 2205, 2625, 2835, 2873, 3087, 3675, 3757, 3773, 3969, 4725, 4757, 5103, 5145, 5929, 6557, 6615, 7203, 7875, 8303, 8505, 9261, 9317, 9797, 10051
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2011

Keywords

Examples

			a(10) = 441 = 3^2 * 7^2.
a(11) = 525 = 3 * 5^2 * 7.
a(12) = 539 = 7^2 * 11.
		

Crossrefs

A143203 is a subsequence.

Programs

  • Haskell
    a195106 n = a195106_list !! (n-1)
    a195106_list = filter (\x -> a006530 x - a020639 x == 4) [1,3..]
  • Mathematica
    pf4Q[n_]:=Module[{pfs=Transpose[FactorInteger[n]][[1]]}, Max[pfs]- Min[pfs]==4]; Select[Range[11000],pf4Q] (* Harvey P. Dale, Sep 24 2011 *)

Formula

Sum_{n>=1} 1/a(n) = 1/48 + Sum_{n>=1} 1/A143203(n) = 1/48 + Sum_{n>=1} 1/((A023200(n)+1)^2-4) = 0.130715767205... . - Amiram Eldar, Oct 26 2024
Showing 1-4 of 4 results.