cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143405 Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.

Original entry on oeis.org

1, 1, 4, 17, 89, 552, 3895, 30641, 265186, 2497551, 25373097, 276105106, 3199697517, 39297401197, 509370849148, 6943232742493, 99217486649933, 1482237515573624, 23093484367004715, 374416757914118941, 6304680593346141746, 110063311977033807187
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is the number of the partitions of an n-set where each block is endowed with a nonempty subset. - Emanuele Munarini, Sep 15 2016

Examples

			a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 05 2019
  • Mathematica
    CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ Seiichi Manyama, May 14 2022

Formula

a(n) = Sum_{k=0..n} Sum_{t=k..n} C(n,t) * Stirling2(t,k)*k^(n-t).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k) * Stirling2(k,t)*t^(n-k).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t)*t^(k-t).
E.g.f.: exp(exp(x)*(exp(x)-1)). - Vladeta Jovovic, Dec 08 2008
a(n) = sum(binomial(n,k)*2^k*bell(k)*S(n-k,-1),k=0..n), where bell(n) are the Bell numbers (A000110) and S(n,x) = sum(Stirling2(n,k)*x^k,k=0..n) are the Stirling (or exponential) polynomials. - Emanuele Munarini, Sep 15 2016
Identity: sum(binomial(n,k)*a(k)*bell(n-k),k=0..n) = 2^n*bell(n). - Emanuele Munarini, Sep 15 2016
a(n) = Sum_{k=0..n} A047974(k) * Stirling2(n,k). - Seiichi Manyama, May 14 2022
a(n) ~ exp(exp(2*z) - exp(z) - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) - (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) - 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 1/8 - n/LambertW(n) + sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022