A144129 a(n) = ChebyshevT(3, n).
0, 1, 26, 99, 244, 485, 846, 1351, 2024, 2889, 3970, 5291, 6876, 8749, 10934, 13455, 16336, 19601, 23274, 27379, 31940, 36981, 42526, 48599, 55224, 62425, 70226, 78651, 87724, 97469, 107910, 119071, 130976, 143649, 157114, 171395, 186516
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[ 4*n^3-3*n: n in [0..36] ]; // Klaus Brockhaus, Jan 11 2009
-
Magma
I:=[0, 1, 26, 99]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
-
Maple
a := n -> (4*n^2-3)*n; # Peter Luschny, Jul 12 2009
-
Mathematica
lst={};Do[AppendTo[lst,ChebyshevT[3,n]],{n,0,10^2}];lst Round[Table[N[Cosh[3 ArcCosh[n]], 100], {n, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *) CoefficientList[Series[x*(1+22*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *) LinearRecurrence[{4,-6,4,-1},{0,1,26,99},40] (* Harvey P. Dale, Apr 02 2015 *)
-
PARI
a(n) = 4*n^3-3*n \\ Charles R Greathouse IV, Feb 08 2012
Formula
a(n) = 4*n^3 - 3*n. - Klaus Brockhaus, Jan 11 2009
G.f.: x*(1 + 22*x + x^2)/(1 - x)^4. - Klaus Brockhaus, Jan 11 2009
a(n) = cosh(3*arccosh(n)) = cos(3*arccos(n)). - Artur Jasinski, Feb 14 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = 24*A000292(n-1) + n. - Bruce J. Nicholson, Jun 12 2020
From Gerry Martens, Apr 06 2024: (Start)
a(n) = Imaginary part of -(1/2)*(2*n*i-1)^3.
a(n) = -4*(1/4 + n^2)^(3/2)*sin(3*arctan(2*n)). (End)
Comments