cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144129 a(n) = ChebyshevT(3, n).

Original entry on oeis.org

0, 1, 26, 99, 244, 485, 846, 1351, 2024, 2889, 3970, 5291, 6876, 8749, 10934, 13455, 16336, 19601, 23274, 27379, 31940, 36981, 42526, 48599, 55224, 62425, 70226, 78651, 87724, 97469, 107910, 119071, 130976, 143649, 157114, 171395, 186516
Offset: 0

Views

Author

Keywords

Comments

The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=3, thus a(k) = |(P(3,0)-(-1)^k*P(3,2*k))/2|. - Peter Luschny, Jul 12 2009
Partial sums of A069190. - J. M. Bergot, Jul 13 2013

Crossrefs

Programs

  • Magma
    [ 4*n^3-3*n: n in [0..36] ]; // Klaus Brockhaus, Jan 11 2009
    
  • Magma
    I:=[0, 1, 26, 99]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Maple
    a := n -> (4*n^2-3)*n; # Peter Luschny, Jul 12 2009
  • Mathematica
    lst={};Do[AppendTo[lst,ChebyshevT[3,n]],{n,0,10^2}];lst
    Round[Table[N[Cosh[3 ArcCosh[n]], 100], {n, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
    CoefficientList[Series[x*(1+22*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,26,99},40] (* Harvey P. Dale, Apr 02 2015 *)
  • PARI
    a(n) = 4*n^3-3*n \\ Charles R Greathouse IV, Feb 08 2012
    

Formula

a(n) = 4*n^3 - 3*n. - Klaus Brockhaus, Jan 11 2009
G.f.: x*(1 + 22*x + x^2)/(1 - x)^4. - Klaus Brockhaus, Jan 11 2009
a(n) = cosh(3*arccosh(n)) = cos(3*arccos(n)). - Artur Jasinski, Feb 14 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = 24*A000292(n-1) + n. - Bruce J. Nicholson, Jun 12 2020
From Gerry Martens, Apr 06 2024: (Start)
a(n) = Imaginary part of -(1/2)*(2*n*i-1)^3.
a(n) = -4*(1/4 + n^2)^(3/2)*sin(3*arctan(2*n)). (End)