A038044
Shifts left under transform T where Ta is a DCONV a.
Original entry on oeis.org
1, 1, 2, 4, 9, 18, 40, 80, 168, 340, 698, 1396, 2844, 5688, 11456, 22948, 46072, 92144, 184696, 369392, 739536, 1479232, 2959860, 5919720, 11842696, 23685473, 47376634, 94753940, 189519576, 379039152, 758102900, 1516205800
Offset: 1
-
import Data.Function (on)
a038044 n = a038044_list !! (n-1)
a038044_list = 1 : f 1 [1] where
f x ys = y : f (x + 1) (y:ys) where
y = sum $ zipWith ((*) `on` a038044) divs $ reverse divs
where divs = a027750_row x
-- Reinhard Zumkeller, Jan 21 2014
-
with(numtheory); EIGENbyDIRCONV := proc(upto_n) local n,a,j,i,s,m; a := [1]; for i from 1 to upto_n do s := 0; m := convert(divisors(i),set); n := nops(m); for j from 1 to n do s := s+(a[m[j]]*a[m[(n-j)+1]]); od; a := [op(a),s]; od; RETURN(a); end;
-
dc[b_, c_] := Module[{p}, p[n_] := p[n] = Sum[b[d]*c[n/d], {d, If[n<0, {}, Divisors[n]]}]; p]; A[n_, k_] := Module[{f, b, t}, b[1] = dc[f, f]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], b[t-1]]]; f = Function[m, If[m == 1, 1, b[k][m-1]]]; f[n]]; a[n_] := A[n, 1]; Array[a, 40] (* Jean-François Alcover, Mar 20 2017, after A144324 *)
A144316
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied twice.
Original entry on oeis.org
1, 1, 4, 16, 70, 280, 1168, 4672, 18884, 75632, 303368, 1213472, 4858064, 19432256, 77743040, 310975520, 1243959873, 4975839492, 19903598208, 79614392832, 318458493192, 1273834028832, 5095339755744, 20381359022976, 81525450936496, 326101803775384
Offset: 1
-
k:=2: with(numtheory): dc:= proc(b,c) proc(n) option remember; add(b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq(a(n), n=1..30);
-
dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum[b[d]*c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc];
A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]];
a[n_] := A[n, 2];
Array[a, 30] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
A144317
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 3 times.
Original entry on oeis.org
1, 1, 8, 64, 540, 4320, 35008, 280064, 2244152, 17955008, 143670304, 1149362432, 9195171392, 73561371136, 588492929536, 4707943678208, 37663565234758, 301308521878064, 2410468302643136, 19283746421145088, 154269972376667232
Offset: 1
-
k:=3: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..30);
-
dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum[b[d]*c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc];
A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m - 1]]]; a[n]];
a[n_] := A[n, 3];
Array[a, 30] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
A144318
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 4 times.
Original entry on oeis.org
1, 1, 16, 256, 4216, 67456, 1083136, 17330176, 277344816, 4437547776, 71001776256, 1136028420096, 18176471920896, 290823550734336, 4653177071702016, 74450833163421696, 1191213334782285596, 19059413356516569536, 304950613771087329536, 4879209820337397272576
Offset: 1
-
k:=4: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..30);
A144321
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 7 times.
Original entry on oeis.org
1, 1, 128, 16384, 2105280, 269475840, 34494988288, 4415358500864, 565166154790272, 72341267946323968, 9259682331352899584, 1185239338413171146752, 151710635321300728430592, 19418961321126493239115776, 2485627049104751885136429056
Offset: 1
-
k:=7: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..25);
A144323
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 9 times.
Original entry on oeis.org
1, 1, 512, 262144, 134348544, 68786454528, 35218798673920, 18032024921047040, 9232396828183582208, 4726987176064286720000, 2420217434180064678903808, 1239151326300193115598749696, 634445479065716907074042200064
Offset: 1
-
k:=9: with(numtheory): dc:= proc(b,c) proc(n) option remember; add(b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq(a(n), n=1..20);
A144319
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 5 times.
Original entry on oeis.org
1, 1, 32, 1024, 33264, 1064448, 34094080, 1091010560, 34913358688, 1117227985920, 35751328547328, 1144042513514496, 36609361521378304, 1171499568684105728, 37487986231712710656, 1199615559415862673408
Offset: 1
-
k:=5: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..25);
A144320
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 6 times.
Original entry on oeis.org
1, 1, 64, 4096, 264160, 16906240, 1082257408, 69264474112, 4432942899904, 283708353851392, 18157335711582208, 1162069485541261312, 74372447143871647744, 4759836617207785455616, 304629543505661931028480
Offset: 1
-
k:=6: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..25);
A144322
Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 8 times.
Original entry on oeis.org
1, 1, 256, 65536, 16809856, 4303323136, 1101667434496, 282026863230976, 72198881268083456, 18482913606768459776, 4731625884430073102336, 1211296226414098714198016, 310091833962291289108054016
Offset: 1
-
k:=8: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..20);
Showing 1-9 of 9 results.