A144562 Triangle read by rows: T(n, k) = 2*n*k + n + k - 1.
3, 6, 11, 9, 16, 23, 12, 21, 30, 39, 15, 26, 37, 48, 59, 18, 31, 44, 57, 70, 83, 21, 36, 51, 66, 81, 96, 111, 24, 41, 58, 75, 92, 109, 126, 143, 27, 46, 65, 84, 103, 122, 141, 160, 179, 30, 51, 72, 93, 114, 135, 156, 177, 198, 219, 33, 56, 79, 102, 125, 148, 171, 194, 217, 240, 263
Offset: 1
Examples
Triangle begins: 3; 6, 11; 9, 16, 23; 12, 21, 30, 39; 15, 26, 37, 48, 59; 18, 31, 44, 57, 70, 83; 21, 36, 51, 66, 81, 96, 111; 24, 41, 58, 75, 92, 109, 126, 143; 27, 46, 65, 84, 103, 122, 141, 160, 179; ...
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
- Mutsumi Suzuki Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
Programs
-
Magma
[2*n*k+n+k-1: k in [1..n], n in [1..11]]; /* or, see example: */ [[2*n*k+n+k-1: k in [1..n]]: n in [1..9]]; // Bruno Berselli, Dec 04 2011
-
Maple
A144562:= (n,k) -> 2*n*k +n +k -1; seq(seq(A144562(n,k), k=1..n), n=1..12); # G. C. Greubel, Mar 01 2021
-
Mathematica
T[n_, k_]:= 2*n*k +n +k -1; Table[T[n, k], {n, 11}, {k, n}]//Flatten
-
PARI
T(n,k)=2*n*k+n+k-1 \\ Charles R Greathouse IV, Dec 28 2011
-
Sage
flatten([[2*n*k+n+n-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021
Formula
Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n - 1)/2 = A144640(n). - G. C. Greubel, Mar 01 2021
G.f.: x*y*(3 + 2*x*y + 2*x^3*y^2 - x^2*y*(6 + y))/((1 - x)^2*(1 - x*y)^3). - Stefano Spezia, Nov 04 2024
Extensions
Edited by Ray Chandler, Jan 07 2009
Comments