cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A144640 Row sums from A144562.

Original entry on oeis.org

3, 17, 48, 102, 185, 303, 462, 668, 927, 1245, 1628, 2082, 2613, 3227, 3930, 4728, 5627, 6633, 7752, 8990, 10353, 11847, 13478, 15252, 17175, 19253, 21492, 23898, 26477, 29235, 32178, 35312, 38643, 42177, 45920, 49878, 54057, 58463, 63102, 67980, 73103
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009, Jun 29 2009

Keywords

Comments

Row 2 of the convolution array A213833. - Clark Kimberling, Jul 04 2012

Crossrefs

Programs

  • Magma
    I:=[3, 17, 48, 102]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 06 2012
    
  • Maple
    A144640:= n-> n*(2*n^2 +5*n -1)/2; seq(A144640(n), n=1..40); # G. C. Greubel, Mar 01 2021
  • Mathematica
    CoefficientList[Series[(3+5*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
  • Sage
    [n*(2*n^2 +5*n -1)/2 for n in (1..40)] # G. C. Greubel, Mar 01 2021

Formula

a(n) = n*(2*n^2 + 5*n - 1)/2. - Jon E. Schoenfield, Jun 24 2010
G.f.: x*(3+5*x-2*x^2)/(1-x)^4. - Vincenzo Librandi, Jul 06 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 06 2012
E.g.f.: x*(6 + 11*x + 2*x^2)*exp(x)/2. - G. C. Greubel, Mar 01 2021

A142463 a(n) = 2*n^2 + 2*n - 1.

Original entry on oeis.org

-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
Offset: 0

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Essentially the same as A132209.
From Vincenzo Librandi, Nov 25 2010: (Start)
Numbers k such that 2*k + 3 is a square.
First diagonal of A144562. (End)
The terms a(n) give the values for c of indefinite binary quadratic forms [a, b, c] = [2, 4n+2, a(n)] of discriminant D = 12, where a and c can be switched. The positive numbers represented by these forms are given in A084917. - Klaus Purath, Aug 31 2023

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = -A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n > 0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
From Leo Tavares, Nov 22 2021: (Start)
a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration.
a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration.
a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration.
a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022

Extensions

Edited by the Associate Editors of the OEIS, Sep 02 2009

A153238 Numbers k such that 2*k + 3 is composite.

Original entry on oeis.org

3, 6, 9, 11, 12, 15, 16, 18, 21, 23, 24, 26, 27, 30, 31, 33, 36, 37, 39, 41, 42, 44, 45, 46, 48, 51, 54, 56, 57, 58, 59, 60, 61, 63, 65, 66, 69, 70, 71, 72, 75, 76, 78, 79, 81, 83, 84, 86, 87, 90, 91, 92, 93, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 114
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2008

Keywords

Comments

One less than the associated value in A047845. - R. J. Mathar, Jan 05 2011

Crossrefs

Programs

Formula

a(n) ~ n. - Charles R Greathouse IV, Dec 28 2011

Extensions

Edited by Ray Chandler, Jan 07 2009

A152811 a(n) = 2*(n^2 + 2*n - 2).

Original entry on oeis.org

2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Positive numbers k such that 2*k + 12 is a square. [Comment simplified by Zak Seidov, Jan 14 2009]
Sequence gives positive x values of solutions (x,y) to the Diophantine equation 2*x^3 + 12*x^2 = y^2. Corresponding y values are 8*A154560. There are three other solutions: (0,0), (-4,8) and (-6,0).
From a(2) onwards, third subdiagonal of triangle defined in A144562.
Also, nonnegative numbers of the form (m+sqrt(-3))^2 + (m-sqrt(-3))^2. - Bruno Berselli, Mar 13 2015
a(n-1) is the maximum Zagreb index over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars, so the bound also applies to 2-trees. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024

Examples

			a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
		

Crossrefs

Cf. A028872 (n^2-3), A154560 ((n+3)^2*n/2+1), A144562 (triangle T(m,n) = 2m*n+m+n-1).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Magma
    [ 2*(n^2+2*n-2) : n in [1..47] ];
    
  • Mathematica
    Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    {m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}

Formula

G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by Elmo R. Oliveira, Nov 17 2024]
a(n) = 2*A028872(n+1).
a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 12 2009

A102732 Primes of the form 13n+5.

Original entry on oeis.org

5, 31, 83, 109, 239, 317, 421, 499, 577, 733, 811, 863, 941, 967, 1019, 1097, 1123, 1201, 1279, 1409, 1487, 1669, 1721, 1747, 1877, 2111, 2137, 2267, 2293, 2371, 2423, 2579, 2657, 2683, 2917, 2969, 3203, 3229, 3307, 3359, 3463, 3541, 3593, 3671, 3697
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 07 2005

Keywords

Crossrefs

Cf. A144562. - Vincenzo Librandi, Jan 17 2009

Programs

A139606 a(n) = 15*n + 6.

Original entry on oeis.org

6, 21, 36, 51, 66, 81, 96, 111, 126, 141, 156, 171, 186, 201, 216, 231, 246, 261, 276, 291, 306, 321, 336, 351, 366, 381, 396, 411, 426, 441, 456, 471, 486, 501, 516, 531, 546, 561, 576, 591, 606, 621, 636, 651, 666, 681, 696, 711, 726, 741, 756, 771, 786
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 6th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.
6th transversal numbers (or 6-transversal numbers): (A000217(6)-6)*n + 6.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,6).
G.f.: 3*(2+3*x)/(x-1)^2 . - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 3*exp(x)*(2 + 5*x).
a(n) = 3*A016873(n) = A008597(n) + 6.
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A111199 Numbers k such that 4k + 9 is prime.

Original entry on oeis.org

1, 2, 5, 7, 8, 11, 13, 16, 20, 22, 23, 25, 26, 32, 35, 37, 41, 43, 46, 47, 55, 56, 58, 62, 65, 67, 68, 71, 76, 77, 82, 85, 86, 91, 95, 97, 98, 100, 103, 106, 110, 112, 113, 125, 128, 133, 137, 140, 142, 146, 148, 151, 152, 158, 161, 163, 166, 167, 173, 175, 181, 187
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 24 2005

Keywords

Examples

			For k=98, 4*k + 9 = 401 (prime).
		

Crossrefs

Programs

Formula

a(n) = A005098(n+1) - 2. - R. J. Mathar, Sep 23 2009

Extensions

More terms from R. J. Mathar, Sep 23 2009

A141851 Primes congruent to 4 mod 11.

Original entry on oeis.org

37, 59, 103, 191, 257, 367, 389, 433, 499, 521, 587, 631, 653, 719, 829, 983, 1049, 1093, 1181, 1291, 1423, 1489, 1511, 1621, 1709, 1753, 1907, 1951, 1973, 2017, 2039, 2083, 2237, 2281, 2347, 2633, 2677, 2699, 2897, 2963, 3271, 3359, 3469, 3491, 3557, 3623
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 15 mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A138629 Primes of form 17*n+7.

Original entry on oeis.org

7, 41, 109, 211, 313, 347, 449, 619, 653, 823, 857, 1061, 1129, 1163, 1231, 1367, 1571, 1741, 1877, 1979, 2081, 2251, 2557, 2591, 2659, 2693, 2897, 2999, 3067, 3169, 3203, 3271, 3373, 3407, 3917, 4019, 4597, 4733, 4801, 4903, 4937, 5039, 5107, 5209, 5413
Offset: 1

Views

Author

Keywords

Examples

			17*0+7=7, 17*2+7=41, 17*6+7=109, 17*18+7=211, ...
		

Crossrefs

Cf. A144562.

Programs

  • Magma
    [a: n in [0..450] | IsPrime(a) where a is 17*n+7 ]; // Vincenzo Librandi, Sep 01 2016
  • Mathematica
    a={};Do[x=17*n+7;If[PrimeQ[x],AppendTo[a,x]],{n,10^2}];a
    Select[17Range[0, 500] + 7, PrimeQ] (* Vincenzo Librandi, Sep 01 2016 *)

Extensions

More terms from N. J. A. Sloane, Jul 11 2008

A153642 a(n) = 4*n^2 + 24*n + 8.

Original entry on oeis.org

36, 72, 116, 168, 228, 296, 372, 456, 548, 648, 756, 872, 996, 1128, 1268, 1416, 1572, 1736, 1908, 2088, 2276, 2472, 2676, 2888, 3108, 3336, 3572, 3816, 4068, 4328, 4596, 4872, 5156, 5448, 5748, 6056, 6372, 6696, 7028, 7368, 7716, 8072, 8436, 8808, 9188
Offset: 1

Views

Author

Vincenzo Librandi, Dec 30 2008

Keywords

Comments

2*(fifth subdiagonal of triangle A144562).
Sequence gives values x of solutions (x, y) to the Diophantine equation x^3+28*x^2 = y^2. For a more comprehensive list of solutions see A155135.
For n >= 3, a(n - 1) is the number of checkmate positions with white queen and white king against black king on an n X n board. Reason: The black king can only be on the edge. There are 4*(4*n + 1) checkmate positions where the black king is in the corner, 4*(2*n + 4) checkmate positions where the black king is immediately adjacent to the corner square, and there are 4*(n - 4)*(n + 2) checkmate positions where the black king is on another edge square. That's a total of 4*n^2 + 16*n - 12 = a(n - 1) checkmate positions. - Felix Huber, Oct 29 2023

Crossrefs

Programs

Formula

a(n) = A155135(2n+8) = A155136(2n+7).
a(n) = 4*A028881(n+3).
G.f.: 4*(3 - x)*(3 - 2*x)/(1-x)^3.
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 4*(-2 + (2 + 7*x + x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/56 - cot(sqrt(7)*Pi)*Pi/(8*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/168 - cosec(sqrt(7)*Pi)*Pi/(8*sqrt(7)). (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 21 2009
Showing 1-10 of 33 results. Next