cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A144562 Triangle read by rows: T(n, k) = 2*n*k + n + k - 1.

Original entry on oeis.org

3, 6, 11, 9, 16, 23, 12, 21, 30, 39, 15, 26, 37, 48, 59, 18, 31, 44, 57, 70, 83, 21, 36, 51, 66, 81, 96, 111, 24, 41, 58, 75, 92, 109, 126, 143, 27, 46, 65, 84, 103, 122, 141, 160, 179, 30, 51, 72, 93, 114, 135, 156, 177, 198, 219, 33, 56, 79, 102, 125, 148, 171, 194, 217, 240, 263
Offset: 1

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

Rearrangement of A153238, numbers n such that 2*n+3 is not prime (we have 2*T(n,k) + 3 = (2*n+1)*(2*k+1), as 2*n+3 is odd it consists of (at least) two odd factors and all such factors appear by definition).

Examples

			Triangle begins:
   3;
   6, 11;
   9, 16, 23;
  12, 21, 30, 39;
  15, 26, 37, 48,  59;
  18, 31, 44, 57,  70,  83;
  21, 36, 51, 66,  81,  96, 111;
  24, 41, 58, 75,  92, 109, 126, 143;
  27, 46, 65, 84, 103, 122, 141, 160, 179;
  ...
		

Crossrefs

Main diagonal gives A142463.
T(2n,n) gives A180863(n+1).

Programs

  • Magma
    [2*n*k+n+k-1: k in [1..n], n in [1..11]]; /* or, see example: */ [[2*n*k+n+k-1: k in [1..n]]: n in [1..9]]; // Bruno Berselli, Dec 04 2011
    
  • Maple
    A144562:= (n,k) -> 2*n*k +n +k -1; seq(seq(A144562(n,k), k=1..n), n=1..12); # G. C. Greubel, Mar 01 2021
  • Mathematica
    T[n_, k_]:= 2*n*k +n +k -1; Table[T[n, k], {n, 11}, {k, n}]//Flatten
  • PARI
    T(n,k)=2*n*k+n+k-1 \\ Charles R Greathouse IV, Dec 28 2011
    
  • Sage
    flatten([[2*n*k+n+n-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021

Formula

Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n - 1)/2 = A144640(n). - G. C. Greubel, Mar 01 2021
G.f.: x*y*(3 + 2*x*y + 2*x^3*y^2 - x^2*y*(6 + y))/((1 - x)^2*(1 - x*y)^3). - Stefano Spezia, Nov 04 2024

Extensions

Edited by Ray Chandler, Jan 07 2009

A059993 Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.

Original entry on oeis.org

1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
Offset: 0

Views

Author

Naohiro Nomoto, Mar 14 2001

Keywords

Comments

Nonnegative integers m such that 2*m + 7 is a square. - Vincenzo Librandi, Mar 01 2013
Numbers of the form 4*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017
a(n) is also the number of vertices of the Aztec diamond AZ(n) (see Lemma 2.1 of the Imran et al. paper). - Emeric Deutsch, Sep 23 2017

References

  • M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017

Crossrefs

Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), this sequence (k=3), A139570 (k=4), A222182 (k=5), A181510 (k=6).

Programs

  • Magma
    [2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
    
  • Magma
    I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
  • Mathematica
    Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3,-3,1},{1,9,21},50] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    a(n) = { 2*n^2 + 6*n + 1 } \\ Harry J. Smith, Jul 01 2009
    

Formula

a(n) = 4*n + a(n-1) + 4 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1 + 6*x - 3*x^2)/(1-x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 01 2013
a(n) = Hyper2F1([-2, n], [1], -2). - Peter Luschny, Aug 02 2014
Sum_{n>=0} 1/a(n) = 1/3 + Pi*tan(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(1 + 8*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A222182 Numbers m such that 2*m + 11 is a square.

Original entry on oeis.org

-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
Offset: 1

Views

Author

Bruno Berselli, Mar 01 2013

Keywords

Comments

Except the first term, main diagonal of A155546. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), A059993 (k=3), A139570 (k=4), this sequence (k=5), A181510 (k=6).
Cf. A005408 (square roots of 2*a(n)+11), A155546.
After a(2), subsequence of A168489.

Programs

  • Magma
    [m: m in [-5..5000] | IsSquare(2*m+11)];
    
  • Magma
    I:=[-5,-1,7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
    
  • Mathematica
    Table[2 n^2 - 2 n - 5, {n, 50}]
  • Maxima
    makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
    
  • PARI
    a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: -x*(5 - 14*x + 5*x^2)/(1-x)^3.
a(n) = a(-n+1) = 2*n^2 - 2*n - 5.
a(n) = A046092(n-1) - 5.
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(11)*Pi/2)/(2*sqrt(11)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 - 5) + 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A268581 a(n) = 2*n^2 + 8*n + 5.

Original entry on oeis.org

5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2016

Keywords

Comments

Also, numbers m such that 2*m + 6 is a square.
All the terms end with a digit in {5, 7, 9}, or equivalently, are congruent to {5, 7, 9} mod 10. - Stefano Spezia, Aug 05 2021

Crossrefs

Cf. numbers n such that 2*n + k is a perfect square: A093328 (k=-6), A097080 (k=-5), no sequence (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), this sequence (k=6), A059993 (k=7), A147973 (k=8), A139570 (k=9), no sequence (k=10), A222182 (k=11), A152811 (k=12), A181570 (k=13).

Programs

  • Magma
    [2*n^2+8*n+5: n in [0..60]];
    
  • Magma
    [n: n in [0..6000] | IsSquare(2*n+6)];
    
  • Mathematica
    Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
    LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
    
  • Sage
    [2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021

Formula

From Vincenzo Librandi, Apr 13 2016: (Start)
G.f.: (5-x^2)/(1-x)^3.
a(n) = 2*(n+2)^2 - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(5 + 10*x + 2*x^2). - Stefano Spezia, Aug 03 2021

Extensions

Changed offset from 1 to 0, adapted formulas and programs by Bruno Berselli, Apr 13 2016

A271625 a(n) = = 2*(n+1)^2 - 5.

Original entry on oeis.org

3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n + 10 is a perfect square.

Crossrefs

Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 + 4*n - 3: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n+10)];
    
  • Mathematica
    Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
    2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
  • PARI
    x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • Python
    def A271625(n): return 2*pow(n+1,2) - 5
    print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
a(n) = 2*A000290(n+1) - 5. - G. C. Greubel, Jan 21 2025

Extensions

Name simplified by G. C. Greubel, Jan 21 2025

A144650 Triangle read by rows where T(m,n) = 2m*n + m + n + 1.

Original entry on oeis.org

5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1

Views

Author

Vincenzo Librandi, Jan 13 2009

Keywords

Comments

First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   5;
   8, 13;
  11, 18, 25;
  14, 23, 32, 41;
  17, 28, 39, 50,  61;
  20, 33, 46, 59,  72,  85;
  23, 38, 53, 68,  83,  98, 113;
  26, 43, 60, 77,  94, 111, 128, 145;
  29, 48, 67, 86, 105, 124, 143, 162, 181;
  32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
		

Crossrefs

Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).

Programs

  • Magma
    [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • SageMath
    flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023

Formula

Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)

A188653 Second differences of A000463; first differences of A188652.

Original entry on oeis.org

1, 1, -3, 7, -11, 17, -23, 31, -39, 49, -59, 71, -83, 97, -111, 127, -143, 161, -179, 199, -219, 241, -263, 287, -311, 337, -363, 391, -419, 449, -479, 511, -543, 577, -611, 647, -683, 721, -759, 799, -839, 881, -923, 967, -1011, 1057, -1103, 1151, -1199, 1249, -1299, 1351, -1403, 1457, -1511, 1567, -1623, 1681, -1739, 1799, -1859, 1921, -1983, 2047, -2111, 2177, -2243, 2311, -2379, 2449, -2519, 2591, -2663, 2737, -2811
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 13 2011

Keywords

Crossrefs

Programs

  • Haskell
    a188653 n = a188653_list !! (n-1)
    a188653_list = zipWith (-) (tail a188652_list) a188652_list
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, 1, -3, 7}, 75] (* Jean-François Alcover, Dec 16 2021 *)
    Differences[Flatten[Table[{n,n^2},{n,50}]],2] (* Harvey P. Dale, Aug 03 2025 *)

Formula

a(2*n) = a(2*n-1)+4*n^2-2*n-2, a(2*n+1) = -a(2*n)-2*n.
a(2*n) = A056220(n), a(2*n-1) = -A142463(n).
Abs(a(n)) = A047838(n) for n > 1.
a(n) = A188652(n+1)-A188652(n) = A000463(n+2)-2*A000463(n+1)+A000463(n).
G.f.: x*(-1-3*x+x^2+x^3) / ((x-1)*(1+x)^3). - R. J. Mathar, Apr 14 2011
a(n) = a(-n) = ((2*n^2-5)*(-1)^n+1)/4. - Bruno Berselli, Sep 14 2011
E.g.f.: 1 + ((x^2 - x - 2)*cosh(x) - (x^2 - x - 3)*sinh(x))/2. - Stefano Spezia, Jul 08 2023
Sum_{n>=1} 1/a(n) = 1/2 - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)) - tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, May 11 2025

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A143941 The Wiener index of a chain of n triangles (i.e., joined like VVV..VV; here V is a triangle!).

Original entry on oeis.org

3, 14, 37, 76, 135, 218, 329, 472, 651, 870, 1133, 1444, 1807, 2226, 2705, 3248, 3859, 4542, 5301, 6140, 7063, 8074, 9177, 10376, 11675, 13078, 14589, 16212, 17951, 19810, 21793, 23904, 26147, 28526, 31045, 33708, 36519, 39482, 42601, 45880, 49323, 52934
Offset: 1

Views

Author

Emeric Deutsch, Sep 06 2008

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
Row 2 of the convolution array A213752. - Clark Kimberling, Jun 20 2012
Also the circuit rank of the (n+2) X (n+2) bishop graph. - Eric W. Weisstein, May 10 2019

Examples

			a(2)=14 because in the graph VV (V is a triangle!) we have 6 distances equal to 1 and 4 distances equal to 2.
		

Crossrefs

Programs

  • Magma
    [n*(1+6*n+2*n^2)/3 : n in [1..40]]; // Wesley Ivan Hurt, Apr 08 2015
  • Maple
    seq((1/3)*n*(1+6*n+2*n^2), n=1..43);
  • Mathematica
    CoefficientList[Series[(3+2*x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 03 2012 *)
    LinearRecurrence[{4,-6,4,-1},{3,14,37,76},50] (* Harvey P. Dale, Sep 06 2023 *)

Formula

a(n) = n*(1 + 6*n + 2*n^2)/3.
G.f.: z*(3 + 2*z - z^2)/(1-z)^4.
a(n) = Sum_{k=1..n} k*A143940(n,k).
a(n) = Sum_{k=1..n} A142463(k). - Richard R. Forberg, Jan 09 2015
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 08 2015
E.g.f.: exp(x)*x*(9 + 12*x + 2*x^2)/3. - Stefano Spezia, Jan 03 2022
Showing 1-10 of 30 results. Next