cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A144562 Triangle read by rows: T(n, k) = 2*n*k + n + k - 1.

Original entry on oeis.org

3, 6, 11, 9, 16, 23, 12, 21, 30, 39, 15, 26, 37, 48, 59, 18, 31, 44, 57, 70, 83, 21, 36, 51, 66, 81, 96, 111, 24, 41, 58, 75, 92, 109, 126, 143, 27, 46, 65, 84, 103, 122, 141, 160, 179, 30, 51, 72, 93, 114, 135, 156, 177, 198, 219, 33, 56, 79, 102, 125, 148, 171, 194, 217, 240, 263
Offset: 1

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

Rearrangement of A153238, numbers n such that 2*n+3 is not prime (we have 2*T(n,k) + 3 = (2*n+1)*(2*k+1), as 2*n+3 is odd it consists of (at least) two odd factors and all such factors appear by definition).

Examples

			Triangle begins:
   3;
   6, 11;
   9, 16, 23;
  12, 21, 30, 39;
  15, 26, 37, 48,  59;
  18, 31, 44, 57,  70,  83;
  21, 36, 51, 66,  81,  96, 111;
  24, 41, 58, 75,  92, 109, 126, 143;
  27, 46, 65, 84, 103, 122, 141, 160, 179;
  ...
		

Crossrefs

Main diagonal gives A142463.
T(2n,n) gives A180863(n+1).

Programs

  • Magma
    [2*n*k+n+k-1: k in [1..n], n in [1..11]]; /* or, see example: */ [[2*n*k+n+k-1: k in [1..n]]: n in [1..9]]; // Bruno Berselli, Dec 04 2011
    
  • Maple
    A144562:= (n,k) -> 2*n*k +n +k -1; seq(seq(A144562(n,k), k=1..n), n=1..12); # G. C. Greubel, Mar 01 2021
  • Mathematica
    T[n_, k_]:= 2*n*k +n +k -1; Table[T[n, k], {n, 11}, {k, n}]//Flatten
  • PARI
    T(n,k)=2*n*k+n+k-1 \\ Charles R Greathouse IV, Dec 28 2011
    
  • Sage
    flatten([[2*n*k+n+n-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021

Formula

Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n - 1)/2 = A144640(n). - G. C. Greubel, Mar 01 2021
G.f.: x*y*(3 + 2*x*y + 2*x^3*y^2 - x^2*y*(6 + y))/((1 - x)^2*(1 - x*y)^3). - Stefano Spezia, Nov 04 2024

Extensions

Edited by Ray Chandler, Jan 07 2009

A139606 a(n) = 15*n + 6.

Original entry on oeis.org

6, 21, 36, 51, 66, 81, 96, 111, 126, 141, 156, 171, 186, 201, 216, 231, 246, 261, 276, 291, 306, 321, 336, 351, 366, 381, 396, 411, 426, 441, 456, 471, 486, 501, 516, 531, 546, 561, 576, 591, 606, 621, 636, 651, 666, 681, 696, 711, 726, 741, 756, 771, 786
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 6th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.
6th transversal numbers (or 6-transversal numbers): (A000217(6)-6)*n + 6.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,6).
G.f.: 3*(2+3*x)/(x-1)^2 . - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 3*exp(x)*(2 + 5*x).
a(n) = 3*A016873(n) = A008597(n) + 6.
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A098828 Primes of the form 2*n^2 + 2*n - 1.

Original entry on oeis.org

3, 11, 23, 59, 83, 179, 263, 311, 419, 479, 683, 839, 1103, 1511, 2111, 2243, 2663, 2963, 3119, 4139, 4703, 5099, 5303, 5939, 7079, 10223, 11399, 12011, 12323, 12959, 17483, 19403, 21011, 21839, 22259, 24419, 25763, 27143, 27611, 28559, 30011
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 09 2004

Keywords

Comments

a(n)==3 (mod 4).
Equivalently primes p such that 2p+3 is square.
Also 3 followed by primes p of the form 2*n^2+6*n+3 = 2*(n+2)^2-2*(n+2)-1 (see the first comment) such that 2^(p-1)+3 is not prime. - Vincenzo Librandi, Jan 03 2009; M. F. Hasler, Jan 07 2009; R. J. Mathar, Jan 14 2009; Bruno Berselli, Sep 23 2013

Crossrefs

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(30100) | exists(t){ n: n in [1..Isqrt(p div 2)] | 2*n^2+6*n+3 eq p } and not IsPrime(2^(p-1)+3) ];
    
  • Mathematica
    Select[Table[Prime[n], {n, 3500}], IntegerQ[(2# + 3)^(1/2)] &] (* Ray Chandler, Oct 26 2004 *)
  • PARI
    list(lim)=my(v=List()); for(n=1,oo, my(t=2*n*(n+1)-1); if(t>lim, return(Vec(v))); if(isprime(t), listput(v,t))) \\ Charles R Greathouse IV, Feb 26 2025

Formula

a(n) = (A109367(n) - 3)/2.

Extensions

Corrected by Ray Chandler, Oct 26 2004
Edited by N. J. A. Sloane, Jan 25 2009
Name edited by Charles R Greathouse IV, Feb 26 2025

A111199 Numbers k such that 4k + 9 is prime.

Original entry on oeis.org

1, 2, 5, 7, 8, 11, 13, 16, 20, 22, 23, 25, 26, 32, 35, 37, 41, 43, 46, 47, 55, 56, 58, 62, 65, 67, 68, 71, 76, 77, 82, 85, 86, 91, 95, 97, 98, 100, 103, 106, 110, 112, 113, 125, 128, 133, 137, 140, 142, 146, 148, 151, 152, 158, 161, 163, 166, 167, 173, 175, 181, 187
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 24 2005

Keywords

Examples

			For k=98, 4*k + 9 = 401 (prime).
		

Crossrefs

Programs

Formula

a(n) = A005098(n+1) - 2. - R. J. Mathar, Sep 23 2009

Extensions

More terms from R. J. Mathar, Sep 23 2009

A153144 Numbers n such that 2*n+19 is not a prime.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 13, 15, 16, 18, 19, 22, 23, 25, 28, 29, 31, 33, 34, 36, 37, 38, 40, 43, 46, 48, 49, 50, 51, 52, 53, 55, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 75, 76, 78, 79, 82, 83, 84, 85, 88, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Crossrefs

Numbers n such that 2n+k is not prime: A047845 (k=1), A153238 (k=3), A153052 (k=5), A153053 (k=7), A153723 (k=9), A153083 (k=11), A153082 (k=13), A241571 (k=15), A241572 (k=17), this sequence (k=19).

Programs

  • Magma
    [n: n in [1..120] | not IsPrime(2*n + 19)]; // Vincenzo Librandi, Dec 13 2012
  • Mathematica
    Select[Range[0, 500], !PrimeQ[2# + 19] &] (* Vincenzo Librandi, Dec 13 2012 *)

A153052 Numbers m such that 2*m + 5 is not a prime.

Original entry on oeis.org

2, 5, 8, 10, 11, 14, 15, 17, 20, 22, 23, 25, 26, 29, 30, 32, 35, 36, 38, 40, 41, 43, 44, 45, 47, 50, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 68, 69, 70, 71, 74, 75, 77, 78, 80, 82, 83, 85, 86, 89, 90, 91, 92, 95, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One less than the associated entry in A153238. - R. J. Mathar, Jan 05 2011
The terms are the values of 2*h*k + k + h - 2, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [0..110]| not IsPrime(2*n+5)]; // Vincenzo Librandi, Oct 16 2012
  • Mathematica
    Select[Range[0, 150], !PrimeQ[2*# + 5] &] (* Vincenzo Librandi, Oct 16 2012 *)

A163769 Primes p such that 2*p+3 is not prime.

Original entry on oeis.org

3, 11, 23, 31, 37, 41, 59, 61, 71, 79, 83, 101, 103, 107, 109, 131, 149, 151, 163, 179, 181, 191, 211, 233, 239, 241, 251, 257, 263, 271, 281, 293, 311, 313, 317, 331, 347, 359, 367, 373, 389, 401, 419, 421, 431, 433, 443, 449, 457, 461, 479, 491, 499, 521
Offset: 1

Views

Author

Vincenzo Librandi, Aug 04 2009

Keywords

Comments

All those p appear in A144562. [Proof: since 2p+3 is odd and not prime, it can be written as a product of two odd numbers, 2p+3=(2k+1)*(2s+1), therefore p=2ks+k+s-1. - R. J. Mathar, Aug 06 2009]

Examples

			3 is in the sequence because 2*3+3=9 is composite; 23 is in the sequence because 2*23+3=49 is composite.
		

Crossrefs

Cf. A144562.

Programs

  • Magma
    [p: p in PrimesUpTo(700) | not IsPrime(2*p+3)]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    Select[Prime[Range[200]],!PrimeQ[2#+3]&] (* Harvey P. Dale, Feb 02 2012 *)

Formula

A153238 INTERSECT A000040. - R. J. Mathar, Aug 05 2009
A000040 \ A023204. - R. J. Mathar, Aug 05 2009

Extensions

Entries checked - R. J. Mathar, Aug 06 2009

A165635 Primes of the form (p^2 - 3)/2 where p is also prime.

Original entry on oeis.org

3, 11, 23, 59, 83, 179, 263, 419, 479, 683, 839, 1103, 2243, 2663, 3119, 4703, 5099, 5303, 5939, 11399, 12323, 19403, 22259, 25763, 27143, 28559, 33023, 34583, 42923, 47123, 54779, 56783, 60899, 62303, 64439, 67343, 75659, 78803, 83639, 98123
Offset: 1

Views

Author

Vincenzo Librandi, Sep 23 2009

Keywords

Comments

The sequence could be generated by searching for squared primes p^2 in A153238.

Examples

			The prime 3=(3^2-3)/2 is generated by p=3. The prime 11=(5^2-3)/2 is generated by p=5. The prime 23 by p=7.
		

Crossrefs

Programs

  • Magma
    [a: p in PrimesInInterval(1, 500) | IsPrime(a) where a is (p^2 - 3) div 2]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    Select[Table[(p^2 - 3)/2, {p, Prime[Range[300]]}], PrimeQ] (* Vincenzo Librandi, Oct 12 2012 *)

Formula

a(n) = (A110589(n)^2-3)/2 .

Extensions

More terms from Max Alekseyev, Sep 25 2009
Comment clarified by R. J. Mathar, Oct 07 2009

A282026 a(n) is the smallest m with gcd(m, 2*n+1) = 1 such that 2*n + 2*m + 1 is composite.

Original entry on oeis.org

4, 11, 2, 1, 8, 2, 1, 17, 2, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 4, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 8, 2, 1, 8, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2017

Keywords

Comments

Starting at 2*n + 1, find the next odd composite number 2*n + 2*m + 1 that is relatively prime to 2*n + 1; then a(n) = m.
Since 2*n + 3 is relatively prime to 2*n + 1, and (2*n + 3)^2 is composite, a(n) <= 2*n^2 + 5*n + 4 (this is tight for n=0 and n=1).
From Andrey Zabolotskiy, Feb 13 2017: (Start)
Up to n = 10^7, a(n) are from the set [1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22]. First occurrence of 14 is a(99412), first occurrence of 22 is a(7225627). [Thanks to Altug Alkan for pointing out a(99412).]
a(n) = 1 iff n is in A153238.
(End)
Based on Altug Alkan's b-file, the records in this sequence are 4, 11, 17, 19, ... and occur at positions 1, 2, 8, 638, ... If the sequence is unbounded, then these two subsidiary sequences should be added to the OEIS (if they are new). - N. J. A. Sloane, Feb 13 2017

Examples

			When n=1, 2*n + 1 = 3, and 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 are all either prime or have a common factor with 3. The next term, 25, is OK, and so a(1) = (25 - 3)/2 = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[m = 1; While[Nand[CoprimeQ[m, 2 n + 1], CompositeQ[2 (n + m) + 1]], m++]; m, {n, 0, 120}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    a(n) = my(k=1); while(isprime(2*n+2*k+1) || gcd(2*n+1, k) != 1, k++); k; \\ Altug Alkan, Feb 13 2017

Extensions

Definition corrected by Altug Alkan, Feb 13 2017

A154591 a(n) = 2*n^2 + 18*n + 7.

Original entry on oeis.org

27, 51, 79, 111, 147, 187, 231, 279, 331, 387, 447, 511, 579, 651, 727, 807, 891, 979, 1071, 1167, 1267, 1371, 1479, 1591, 1707, 1827, 1951, 2079, 2211, 2347, 2487, 2631, 2779, 2931, 3087, 3247, 3411, 3579, 3751, 3927, 4107, 4291, 4479, 4671, 4867, 5067, 5271
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Ninth diagonal of A144562.
2*a(n) + 67 is a square.

Crossrefs

Programs

  • Magma
    I:=[27, 51, 79]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {27, 51, 79}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
  • PARI
    for(n=1, 40, print1(2*n^2 + 18*n + 7", ")); \\ Vincenzo Librandi, Feb 22 2012
    
  • SageMath
    [2*n^2+18*n+7 for n in range(1,51)] #  G. C. Greubel, May 27 2024

Formula

G.f.: (9*x^2-6*x-7)/(x-1)^3. - Bruno Berselli, Dec 07 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
Sum_{n>=1} 1/a(n) = 1621/20097 + tan(sqrt(67)*Pi/2)*Pi/(2*sqrt(67)). - Amiram Eldar, Feb 25 2023
E.g.f.: (7 + 20*x + 2*x^2)*exp(x). - G. C. Greubel, May 27 2024
Showing 1-10 of 17 results. Next