A145018 a(n) = (n^2 - n + 8)/2.
4, 5, 7, 10, 14, 19, 25, 32, 40, 49, 59, 70, 82, 95, 109, 124, 140, 157, 175, 194, 214, 235, 257, 280, 304, 329, 355, 382, 410, 439, 469, 500, 532, 565, 599, 634, 670, 707, 745, 784, 824, 865, 907, 950, 994, 1039, 1085, 1132, 1180, 1229, 1279, 1330, 1382, 1435
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. W. Maffucci, Self-dual polyhedra of given degree sequence, arXiv:2108.01058 [math.CO], 2021.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000217.
Programs
-
Magma
[(n^2 - n + 8)/2 : n in [1..50]]; // Wesley Ivan Hurt, Mar 25 2020
-
Maple
A145018:=n->(n^2 - n + 8)/2: seq(A145018(n), n=1..100); # Wesley Ivan Hurt, Jul 25 2017
-
Mathematica
Nest[Append[#, #[[-1]] + Length@ #] &, {4}, 66] (* or *) Rest@ CoefficientList[Series[x (4 - 7 x + 4 x^2)/(1 - x)^3, {x, 0, 67}], x] (* Michael De Vlieger, Jan 23 2019 *)
-
PARI
x='x+O('x^50); Vec(x*(4 -7*x +4*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 18 2017
-
Sage
[4+binomial(n,2) for n in range(1, 68)] # Zerinvary Lajos, Mar 12 2009
Formula
a(n) = (n^2 - n + 8)/2. - Benoit Cloitre.
From R. J. Mathar, Oct 01 2008: (Start)
G.f.: x*(4 -7*x +4*x^2)/(1-x)^3.
a(n) = a(n-1) + n - 1.
a(n) = 4 + A000217(n-1). (End)
a(n) = 4 + C(n,2), n>=1. - Zerinvary Lajos, Mar 12 2009
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(31)*Pi/2)/sqrt(31). - Amiram Eldar, Dec 13 2022
Extensions
More terms from Alexander R. Povolotsky, Sep 29 2008
Edited by Benoit Cloitre and R. J. Mathar, Sep 30 2008
New name from Hugo Pfoertner, Aug 03 2021
Comments