cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145596 Triangular array of generalized Narayana numbers: T(n, k) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 20, 20, 4, 5, 40, 75, 40, 5, 6, 70, 210, 210, 70, 6, 7, 112, 490, 784, 490, 112, 7, 8, 168, 1008, 2352, 2352, 1008, 168, 8, 9, 240, 1890, 6048, 8820, 6048, 1890, 240, 9, 10, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 10
Offset: 1

Views

Author

Peter Bala, Oct 14 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from (0,0) and finishing at points on the horizontal line y = 1, which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 1 of the generalized Narayana numbers N_r(n, k) := (r + 1)/(n + 1)*binomial(n + 1, k + r)*binomial(n + 1, k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with row numbering starting at n = 0). For other cases see A145597 (r = 2), A145598 (r = 3) and A145599 (r = 4).
T(n,k) is the number of preimages of the permutation 21345...(n+2) under West's stack-sorting map that have exactly k descents. - Colin Defant, Sep 15 2018
T(n+k+1,k+1) equals the number of tilings of an octagon with internal angles of 135 degrees and sides of lengths n, k, 1, 1, n, k, 1, 1 using unit rhombi with internal angles 45 degrees and 135 degrees. See Elnitzky, Theorem 5.1. - Peter Bala, Apr 25 2022

Examples

			n\k|..1.....2....3.....4.....5.....6
====================================
.1.|..1
.2.|..2.....2
.3.|..3.....8....3
.4.|..4....20...20.....4
.5.|..5....40...75....40.....5
.6.|..6....70..210...210....70.....6
...
Row 3 entries:
T(3,1) = 3: the 3 walks from (0,0) to (-2,1) of three steps are LLU, LUL and ULL.
T(3,2) = 8: the 8 walks from (0,0) to (0,1) of three steps are UDU, UUD, ULR, URL, RLU, LRU, RUL and LUR.
T(3,3) = 3: the 3 walks from (0,0) to (2,1) of three steps are RRU, RUR and URR.
.
.
*......*......*......y......*......*......*
.
.
*......3......*......8......*......3......*
.
.
*......*......*......o......*......*......* x-axis
.
.
		

Crossrefs

Programs

  • Magma
    /* As triangle */  [[2/(n+1)*Binomial(n+1,k+1)*Binomial(n+1,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Sep 15 2018
  • Maple
    T:= (n, k) -> 2/(n+1)*binomial(n+1, k+1)*binomial(n+1, k-1):
    for n from 1 to 10 do seq(T(n,k), k = 1..n) end do;
  • Mathematica
    t[n_, k_]:=2/(n+1) Binomial[n+1, k+1] Binomial[n+1, k-1]; Table[t[n, k], {n, 3, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Sep 15 2018 *)

Formula

T(n,k) = 2/(n + 1)*binomial(n + 1,k + 1)*binomial(n + 1,k - 1) for 1 <= k <= n. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n - 1,1).
O.g.f. for column (k + 2): 2/(k + 1) * y^(k+2)/(1 - y)^(k+4) * Jacobi_P(k,2,1,(1 + y)/(1 - y)). The column generating functions begin: column 2: 2*y^2/(1 - y)^4; column 3: y^3*(3 + 2*y)/(1 - y)^6; column 4: y^4*(4 + 8*y + 2*y^2)/(1 - y)^8; the polynomials in the numerators are the row generating polynomials of array A108838.
O.g.f. for array: 1/(2*x*y^3) * (((1 + x)*y - 1)*sqrt(1 - 2*(1 + x)*y + (y - x*y)^2) + x^2*y^2 - 2*x*y + (1 - y)^2) = x*y + (2*x + 2*x^2)*y^2 + (3*x + 8*x^2 + 3*x^3)*y^3 + (4*x + 20*x^2 + 20*x^3 + 4*x^4)*y^4 + ... .
Row sums A002057.
Identities for row polynomials R_n(x) = Sum_{k = 1..n} T(n,k)*x^k (compare with the results in section 1 of [Mansour & Sun]):
x*R_(n-1)(x) = 2*(n - 1)/((n + 1)*(n + 2)) * Sum_{k = 0..n} binomial(n + 2,k) * binomial(2*n - k,n) * (x - 1)^k;
R_n(x) = Sum_{k = 0..floor((n-1)/2)} binomial(n, 2*k + 1) * Catalan(k + 1) * x^(k+1)*(1 + x)^(n-2k-1);
Sum_{k = 1..n} (-1)^(n-k)*binomial(n,k)*R_k(x)*(1 + x)^(n-k) = x^m*Catalan(m) if n = 2*m - 1 is odd, otherwise the sum is zero.
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n+1) = 4/(n + 3)*binomial(2*n + 1,n - 1)*x^(n+1) = A002057(n-1)*x^(n+1).
Row generating polynomial R_(n+1)(x) = 2/(n + 2)*x*(1 - x)^n * Jacobi_P(n,2,2,(1 + x)/(1 - x)). - Peter Bala, Oct 31 2008
G.f. satisfies x^3*y*A(x,y)^2-A(x,y)*(x^2*y^2+(-2)*x*y+x^2+(-2)*x+1)+x = 0. - Vladimir Kruchinin, Oct 11 2020
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n + 1, k + 1)*binomial(-n + 1, k - 1)/(-n + 1) = -A108838(n+k-1,k-1) for n >= 2. - Peter Bala, Apr 26 2022
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator x^2*D*(1/x)*D, where D denotes the derivative operator d/dx. Then 48(1+n)/((n+2)!(n+4)!)* E^n(x^2/(1 - x)^5) = (row n generating polynomial)/(1 - x)^(2*n+5) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).
For example, when n = 3 we have 1/3150*E^3(x^2/(1 - x)^5) = x^2 (4 + 20x + 20x^2 + 4x^3)/(1 - x)^11. (End)