A145596 Triangular array of generalized Narayana numbers: T(n, k) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).
1, 2, 2, 3, 8, 3, 4, 20, 20, 4, 5, 40, 75, 40, 5, 6, 70, 210, 210, 70, 6, 7, 112, 490, 784, 490, 112, 7, 8, 168, 1008, 2352, 2352, 1008, 168, 8, 9, 240, 1890, 6048, 8820, 6048, 1890, 240, 9, 10, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 10
Offset: 1
Examples
n\k|..1.....2....3.....4.....5.....6 ==================================== .1.|..1 .2.|..2.....2 .3.|..3.....8....3 .4.|..4....20...20.....4 .5.|..5....40...75....40.....5 .6.|..6....70..210...210....70.....6 ... Row 3 entries: T(3,1) = 3: the 3 walks from (0,0) to (-2,1) of three steps are LLU, LUL and ULL. T(3,2) = 8: the 8 walks from (0,0) to (0,1) of three steps are UDU, UUD, ULR, URL, RLU, LRU, RUL and LUR. T(3,3) = 3: the 3 walks from (0,0) to (2,1) of three steps are RRU, RUR and URR. . . *......*......*......y......*......*......* . . *......3......*......8......*......3......* . . *......*......*......o......*......*......* x-axis . .
Links
- F. Cai, Q.-H. Hou, Y. Sun, and A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO],2018; Table 2.1 for k=1.
- Colin Defant, Preimages under the stack-sorting algorithm, arXiv:1511.05681 [math.CO], 2015-2018; Graphs Combin., 33 (2017), 103-122.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Serge Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, J. Combin. Theory Ser. A, 77(2): 193-221, 1997.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Toufik Mansour and Yidong Sun, Identities involving Narayana polynomials and Catalan numbers, arXiv:0805.1274 [math.CO], 2008.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
Programs
-
Magma
/* As triangle */ [[2/(n+1)*Binomial(n+1,k+1)*Binomial(n+1,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Sep 15 2018
-
Maple
T:= (n, k) -> 2/(n+1)*binomial(n+1, k+1)*binomial(n+1, k-1): for n from 1 to 10 do seq(T(n,k), k = 1..n) end do;
-
Mathematica
t[n_, k_]:=2/(n+1) Binomial[n+1, k+1] Binomial[n+1, k-1]; Table[t[n, k], {n, 3, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Sep 15 2018 *)
Formula
T(n,k) = 2/(n + 1)*binomial(n + 1,k + 1)*binomial(n + 1,k - 1) for 1 <= k <= n. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n - 1,1).
O.g.f. for column (k + 2): 2/(k + 1) * y^(k+2)/(1 - y)^(k+4) * Jacobi_P(k,2,1,(1 + y)/(1 - y)). The column generating functions begin: column 2: 2*y^2/(1 - y)^4; column 3: y^3*(3 + 2*y)/(1 - y)^6; column 4: y^4*(4 + 8*y + 2*y^2)/(1 - y)^8; the polynomials in the numerators are the row generating polynomials of array A108838.
O.g.f. for array: 1/(2*x*y^3) * (((1 + x)*y - 1)*sqrt(1 - 2*(1 + x)*y + (y - x*y)^2) + x^2*y^2 - 2*x*y + (1 - y)^2) = x*y + (2*x + 2*x^2)*y^2 + (3*x + 8*x^2 + 3*x^3)*y^3 + (4*x + 20*x^2 + 20*x^3 + 4*x^4)*y^4 + ... .
Row sums A002057.
Identities for row polynomials R_n(x) = Sum_{k = 1..n} T(n,k)*x^k (compare with the results in section 1 of [Mansour & Sun]):
x*R_(n-1)(x) = 2*(n - 1)/((n + 1)*(n + 2)) * Sum_{k = 0..n} binomial(n + 2,k) * binomial(2*n - k,n) * (x - 1)^k;
R_n(x) = Sum_{k = 0..floor((n-1)/2)} binomial(n, 2*k + 1) * Catalan(k + 1) * x^(k+1)*(1 + x)^(n-2k-1);
Sum_{k = 1..n} (-1)^(n-k)*binomial(n,k)*R_k(x)*(1 + x)^(n-k) = x^m*Catalan(m) if n = 2*m - 1 is odd, otherwise the sum is zero.
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n+1) = 4/(n + 3)*binomial(2*n + 1,n - 1)*x^(n+1) = A002057(n-1)*x^(n+1).
Row generating polynomial R_(n+1)(x) = 2/(n + 2)*x*(1 - x)^n * Jacobi_P(n,2,2,(1 + x)/(1 - x)). - Peter Bala, Oct 31 2008
G.f. satisfies x^3*y*A(x,y)^2-A(x,y)*(x^2*y^2+(-2)*x*y+x^2+(-2)*x+1)+x = 0. - Vladimir Kruchinin, Oct 11 2020
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n + 1, k + 1)*binomial(-n + 1, k - 1)/(-n + 1) = -A108838(n+k-1,k-1) for n >= 2. - Peter Bala, Apr 26 2022
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator x^2*D*(1/x)*D, where D denotes the derivative operator d/dx. Then 48(1+n)/((n+2)!(n+4)!)* E^n(x^2/(1 - x)^5) = (row n generating polynomial)/(1 - x)^(2*n+5) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).
For example, when n = 3 we have 1/3150*E^3(x^2/(1 - x)^5) = x^2 (4 + 20x + 20x^2 + 4x^3)/(1 - x)^11. (End)
Comments