cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A248762 Greatest cube that divides n!.

Original entry on oeis.org

1, 1, 1, 8, 8, 8, 8, 64, 1728, 1728, 1728, 13824, 13824, 13824, 46656000, 2985984000, 2985984000, 2985984000, 2985984000, 23887872000, 221225582592000, 221225582592000, 221225582592000, 1769804660736000, 221225582592000000, 221225582592000000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(4) = 8 because 8 divides 24 and if k > 2 then k^3 does not divide 24.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 3; Table[p[m, n], {n, 1, z}]  (* A248762 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248763 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A145642 *)
    gk[n_]:=Select[Divisors[n!],IntegerQ[Surd[#,3]]&]; Max[#]&/@Array[gk,30] (* Harvey P. Dale, Sep 16 2021 *)
    f[p_, e_] := p^(3*Floor[e/3]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n)=k=ceil((n!/2)^(1/3));while(n!%k^3,k--);k^3
    vector(20,n,a(n)) \\ Derek Orr, Oct 19 2014
    
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(3*(f[i, 2]\3)));} \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A145642(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008834(n!).
a(n) = A248763(n)^3. (End)

A267414 Integers k such that there exist nonnegative integers x,y,z with k! = x^3 + y^3 + z^3.

Original entry on oeis.org

0, 1, 2, 4, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Altug Alkan, Jan 14 2016

Keywords

Comments

From Altug Alkan, David A. Corneth and Chai Wah Wu, Aug 09-26 2020: (Start)
Conjecture I: The natural density of this sequence is 1.
Conjecture II: All integers > 13 are terms. The decomposition is not necessarily unique; for instance, 12! = 35^3 + 309^3 + 766^3 = 240^3 + 504^3 + 696^3.
Deshouillers, Hennecart, & Landreau conjecture (the DHL conjecture) that the sequence of numbers that are a sum of at most three cubes has density 0.0999425... (see links).
This lets us make a heuristic argument that all integers k > 13 are terms.
It was verified for k < 34. For k >= 34 we can use the fact that m is a term if m!/t^3 is the sum of three nonnegative cubes. The cubefree part of 34! is 2686295049620 (cf. A145642) and tau((34!/2686295049620)^(1/3)) = 792 (cf. A248780). 132 terms of corresponding 792 numbers are congruent to 4 or 5 mod 9, that is, there cannot be the sum of three cubes in these 132 terms by modular restriction. So we can see that if 34! isn't the sum of at most three cubes then 792 - 132 = 660 candidate numbers aren't the sum of at most three cubes.
So roughly, if the DHL conjecture holds and if that density can be used as a probability that holds independently for candidates then we have the probability that 34! is the sum of at most 3 cubes to be 1 - (1-0.0999425)^660 ~= 1 - 6.6*10^-31. For larger k this probability doesn't tend to decrease. (End)

Examples

			0 and 1 are terms because 0! = 1! = 1 = 0^3 + 0^3 + 1^3.
2 is a term because 2! = 2 = 0^3 + 1^3 + 1^3.
4 is a term because 4! = 24 = 2^3 + 2^3 + 2^3.
From _Chai Wah Wu_, Jan 18 2016: (Start)
9! = 36^3 + 52^3 + 56^3
10! = 4^3 + 96^3 + 140^3
11! = 105^3 + 222^3 + 303^3
12! = 35^3 + 309^3 + 766^3
14! = 135^3 + 3153^3 + 3822^3
15! = 1092^3 + 2040^3 + 10908^3
16! = 7644^3 + 21192^3 + 22212^3
17! = 9984^3 + 22848^3 + 69984^3
18! = 18900^3 + 54060^3 + 184080^3
19! = 131040^3 + 331200^3 + 436320^3
20! = 87490^3 + 1034430^3 + 1098440^3
21! = 59850^3 + 2072070^3 + 3481380^3 (End)
22! = 286272^3 + 8168832^3 + 8334144^3. - _Altug Alkan_, Aug 08 2020
From _Chai Wah Wu_, Aug 09 2020: (Start)
23! = 8255520^3 + 10856160^3 + 28848960^3
24! = 8648640^3 + 9918720^3 + 85216320^3
25! = 31449600^3 + 194947200^3 + 200592000^3
26! = 133526400^3 + 232377600^3 + 729590400^3
27! = 400579200^3 + 697132800^3 + 2188771200^3
28! = 745516800^3 + 3859430400^3 + 6274195200^3
29! = 6029402400^3 + 7705152000^3 + 20136664800^3
30! = 24051081600^3 + 35394105600^3 + 59154883200^3
31! = 63842385600^3 + 74054736000^3 + 196233710400^3
32! = 19948723200^3 + 392984524800^3 + 587164032000^3
33! = 757780531200^3 + 1319649408000^3 + 1812063052800^3
34! = 2423348928000^3 + 5068495555200^3 + 5322645820800^3
35! = 221937408000^3 + 1100266675200^3 + 21780043084800^3
36! = 37944351244800^3 + 43054819315200^3 + 61932511872000^3 (End)
From _Altug Alkan_, Aug 15-26 2020: (Start)
37! = 24795996825600^3 + 74281492454400^3 + 237157683840000^3.
38! = 117664241587200^3 + 120627079372800^3 + 803958680448000^3.
39! = 863357752857600^3 + 953842592102400^3 + 2663078850432000^3.
40! = 2918729189376000^3 + 5087164642560000^3 + 8703942863616000^3.
41! = 7755318514944000^3 + 8120284204032000^3 + 31896357292800000^3.
42! = 89122911958080000^3 + 33781805785728000^3 + 87002517970368000^3.
43! = 122523857584128000^3 + 202407941159424000^3 + 369098064631296000^3.
44! = 259725052274688000^3 + 793899570207744000^3 + 1288734012453888000^3.
45! = 406827658382745600^3 + 1201813420282675200^3 + 4902359567603097600^3.
47! = 12321320074256793600^3 + 20307078211733913600^3 + 62859559551447859200^3.
48! = 25537325843751321600^3 + 149166695523144499200^3 + 208609080169435545600^3.
50! = 1299690649834536960000^3 + 1575788569801205760000^3 + 2896698799298304000000^3.
52! = 4714930301540659200000^3 + 30326925607072174080000^3 + 37482600824578990080000^3.
57! = 2143437030275189096448000^3 + 18952651629200785047552000^3 + 32303499916146500321280000^3. (End)
From _Altug Alkan_, Mar 05-13 2021: (Start)
46! = 5577191426219212800^3 + 6443840881904025600^3 + 17169667908109516800^3.
49! = 671664000771219456000^3 + 662061074870587392000^3 + 247029110344912896000^3.
51! = 9256160466097459200000^3 + 9117812465538416640000^3 + 428071307793592320000^3.
53! = 162171341319623860224000^3 + 14768160510292180992000^3 + 18786201326150049792000^3.
54! = 545218231179130629120000^3 + 335022509605704560640000^3 + 314703105438452290560000^3.
55! = 1946744272579774187520000^3 + 1230901820453108643840000^3 + 1511561473478381445120000^3.
58! = 52226010170722243215360000^3 + 102552481007618403041280000^3 + 104144718055889686855680000^3.
59! = 496516081488480416563200000^3 + 247419327579970911805440000^3 + 104213060097975874805760000^3. (49,51,53,54,55,59 found by _Bernard Landreau_, Mar 05-10 2021) (End)
From _Bernard Landreau_, Feb 10 2023: (Start)
56! = 8440722823838300835840000^3 + 1539870961334538792960000^3 + 4732343335270526976000000^3.
60! = 1954690295686184458321920000^3 + 187526160279422365040640000^3 + 945736839075280596664320000^3.
61! = 6987261145735262954225664000^3 + 5500819928796737985183744000^3 + 3511150067368879423488000^3.
62! = 28126020674003772660940800000^3 + 12303713179773215087247360000^3 + 19449735813987841779056640000^3.
63! = 106514918440099777554186240000^3 + 49252742968526796125306880000^3 + 86830960771932156207267840000^3.
64! = 426059673760399110216744960000^3 + 197010971874107184501227520000^3 + 347323843087728624829071360000^3.
65! = 1825857768347463635450265600000^3 + 1233646969650476271309619200000^3 + 656708896142403679243468800000^3.
66! = 7629164545500731715435233280000^3 + 383304147481048793646366720000^3 + 4645292541653757960968601600000^3.
67! = 32138800724565658662277939200000^3 + 3987806882839318432102809600000^3 + 14753675466796017234670387200000^3.
68! = 121268519043338230583014195200000^3 + 74635666310379772757724364800000^3 + 65491151303650959730645401600000^3.
69! = 440198819826578009858742681600000^3 + 217119306274746004582406553600000^3 + 422815083063767403026566348800000^3. (End)
From _Bernard Landreau_, Apr 12 2023: (Start)
70! = 1684880479643468059918290124800000^3 + 1267939232313822071989803417600000^3 + 1727697134569562112035900620800000^3.
71! = 7869526037543841297006565785600000^3 + 4179944826601729536159999590400000^3 + 6619802079654886665835708416000000^3.
72! = 13437726338581697013357713817600000^3 + 10167574949678977741805794099200000^3 + 38654599603517743131172247961600000^3.
73! = 96869296261623898801464382586880000^3 + 80774308520159270283270497894400000^3 + 144769602970826932947390114693120000^3.
74! = 649373800890254088606178494873600000^3 + 363407978539450964422332584755200000^3 + 207722030872866958396078844313600000^3.
75! = 2347486647113944742227212238848000000^3 + 2199783184771995658848232636416000000^3 + 1070862876804260107568106602496000000^3.
76! = 12262054139494209011130556907520000000^3 + 2762109848253646350901295382528000000^3 + 2746796636906395254645335359488000000^3.
77! = 47421174895780818749100971655168000000^3 + 18679208068237422355741320413184000000^3 + 31756770658228697228286202871808000000^3.
78! = 141193533844368458064892797124608000000^3 + 108335094312749634096990256889856000000^3 + 193437233894764827340173357613056000000^3.
79! = 897795952124597047877074078334976000000^3 + 151955762572905091739065815367680000000^3 + 551184446076431732583718393774080000000^3.
80! = 3554290394480645556188266337402880000000^3 + 1989394527958598219192394328571904000000^3 + 2658759141945971588173630544019456000000^3. (End)
		

Crossrefs

Programs

  • Maple
    isA267414 := proc(n)
        local nf,x,y ;
        nf := n! ;
        for x from 0 do
            if 3*x^3 > nf then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > nf then
                    break;
                end if;
                if isA000578(nf-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 0 to 1000 do
        if isA267414(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016

Extensions

a(51)-a(64) from Bernard Landreau, Feb 10 2023
a(65)-a(75) from Bernard Landreau, Apr 12 2023

A248763 Greatest k such that k^3 divides n!

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 12, 12, 12, 24, 24, 24, 360, 1440, 1440, 1440, 1440, 2880, 60480, 60480, 60480, 120960, 604800, 604800, 1814400, 3628800, 3628800, 3628800, 3628800, 14515200, 479001600, 479001600, 479001600, 958003200, 958003200, 958003200
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(4) = 2 because 2^3 divides 24 and if k > 2, then k^3 > 8 does not divide 24.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 3; Table[p[m, n], {n, 1, z}]  (* A248762 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248763 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A145642 *)
    f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\3));} \\ Amiram Eldar, Sep 01 2024

Formula

From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053150(n!).
a(n) = (n! / A145642(n))^(1/3) = A248762(n)^(1/3).
log(a(n)) = (1/3)*n*log(n) - (log(3)+1)*n/3 + o(n) (Jakimczuk, 2017). (End)

A145643 Cubefree part of n!!.

Original entry on oeis.org

1, 2, 3, 1, 15, 6, 105, 6, 35, 60, 385, 90, 5005, 1260, 75075, 315, 1276275, 210, 24249225, 525, 509233725, 11550, 11712375675, 34650, 2342475135, 900900, 2342475135, 3153150, 67931778915, 28028, 2105885146365, 14014, 2573859623335
Offset: 1

Views

Author

Artur Jasinski, Oct 15 2008

Keywords

Crossrefs

Cf. A004709, A050985, A006882, A069705 (cubefree part of 2^n), A145642.

Programs

  • Mathematica
    CubefreePart[n_Integer?Positive] := Times @@ Power @@@ ({#[[1]], Mod[ #[[2]], 3]} & /@ FactorInteger[n]); Table[CubefreePart[n!! ], {n, 1, 40}]
  • PARI
    a(n) = my(f = factor(prod(i = 0, (n-1)\2, n - 2*i))); prod(i = 1, #f~, f[i, 1]^(f[i, 2] % 3)); \\ Amiram Eldar, Sep 07 2024
  • Python
    from sympy import factorint, prod
    def A145643(n):
        return 1 if n <= 1 else prod(p**(e % 3) for p, e in factorint(prod(range(n,0,-2))).items())
    # Chai Wah Wu, Feb 04 2015
    

Formula

a(n) = A050985(A006882(n)). - Michel Marcus, May 11 2020

A248779 Rectangular array, by antidiagonals: T(m,n) = greatest (m+1)-th-power-free divisor of n!.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 6, 6, 2, 1, 30, 3, 6, 2, 1, 5, 15, 24, 6, 2, 1, 35, 90, 120, 24, 6, 2, 1, 70, 630, 45, 120, 24, 6, 2, 1, 70, 630, 315, 720, 120, 24, 6, 2, 1, 7, 210, 2520, 5040, 720, 120, 24, 6, 2, 1, 77, 2100, 280, 1260, 5040, 720, 120, 24, 6, 2, 1, 231
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Row 1: A055204, greatest squarefree divisor of n!
Row 2: A145642, greatest cubefree divisor of n!
Row 3: A248766, greatest 4th-power-free divisor of n!
Rows 4 to 7: A248769, A248772, A248775, A248778.
(The divisors are here called "greatest" rather than "largest" because the name refers to ">", called "greater than".)

Examples

			Northwest corner:
1   2   6   6   30   5    35    70
1   2   6   3   15   90   630   630
1   2   6   24  120  45   315   2520
1   2   6   24  120  720  5040  1260
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]
    t = Table[n!/p[m, n], {m, 2, 16}, {n, 1, 16}]; TableForm[t]  (* A248779 array *)
    f = Table[t[[n - k + 1, k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A248779 seq. *)

A145644 Cubefree part of 10^n.

Original entry on oeis.org

1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100, 1, 10, 100
Offset: 0

Views

Author

Artur Jasinski, Oct 15 2008

Keywords

Comments

Period 3: repeat [1, 10, 100].

Crossrefs

Programs

  • Magma
    &cat [[1, 10,100]^^30]; // Wesley Ivan Hurt, Apr 18 2021
  • Mathematica
    CubefreePart[n_Integer?Positive] := Times @@ Power @@@ ({#[[1]], Mod[ #[[2]], 3]} & /@ FactorInteger[n]); Table[CubefreePart[10^n], {n, 1, 40}]
    PadRight[{}, 50, {1, 10, 100}] (* Wesley Ivan Hurt, Apr 18 2021 *)

Formula

a(n) = 10^(n mod 3) = A050985(A011557(n)) = A011557(A010872(n)). - Amiram Eldar, Feb 14 2021
From Wesley Ivan Hurt, Apr 18 2021: (Start)
G.f.: (1+10*x+100*x^2)/(1-x^3).
a(n) = a(n-3). (End)

Extensions

Offset corrected by Amiram Eldar, Feb 14 2021
Showing 1-6 of 6 results.