cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145995 a(n) = 8 - 12*n + 5*n^2.

Original entry on oeis.org

1, 4, 17, 40, 73, 116, 169, 232, 305, 388, 481, 584, 697, 820, 953, 1096, 1249, 1412, 1585, 1768, 1961, 2164, 2377, 2600, 2833, 3076, 3329, 3592, 3865, 4148, 4441, 4744, 5057, 5380, 5713, 6056, 6409, 6772, 7145, 7528, 7921, 8324, 8737, 9160, 9593, 10036
Offset: 1

Views

Author

Artur Jasinski, Oct 26 2008

Keywords

Comments

For n > 1, a(n) is square if and only if n-1 is in A081016.
a(n) and a(-n) give all numbers m such that 5*m-4 is a square. - Bruno Berselli, Feb 03 2016

Examples

			A081016(0) = 1 and a(2) = 2^2 = 4; A081016(1) = 6 and a(7) = 13^2 = 169; A081016(2) = 40 and a(41) = 89^2 = 7921; A081016(3) = 273 and a(274) = 610^2 = 372100; A081016(4) = 1870 and a(1871) = 4181^2 = 17480761. - _Klaus Brockhaus_, Oct 29 2008
		

Crossrefs

Cf. A195162 (numbers m such that 5*m+4 is a square).

Programs

  • GAP
    List([1..50], n-> 8-12*n+5*n^2); # G. C. Greubel, Jul 15 2019
  • Magma
    [8-12*n+5*n^2: n in [1..50]]; // G. C. Greubel, Jul 15 2019
    
  • Mathematica
    Table[8 -12x +5x^2, {x,50}]
    s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 450, 10}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
    LinearRecurrence[{3, -3, 1}, {1, 4, 17}, 51] (* G. C. Greubel, Jan 30 2016 *)
  • PARI
    for(n=1, 50, print1(8-12*n+5*n^2, ",")) \\ Klaus Brockhaus, Oct 29 2008
    
  • Sage
    [8-12*n+5*n^2 for n in (1..50)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = a(n-1) + 10*n - 17, with a(1)=1. - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Jan 30 2016 (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3, a(1)=1, a(2)=4, a(3)=17.
G.f.: x*(1 + x + 8*x^2)/(1-x)^3.
E.g.f.: (5*x^2 - 7*x + 8)*exp(x) - 8. (End)

Extensions

Corrected definition; corrected comment; added keyword. - Klaus Brockhaus, Oct 29 2008