A146025
Numbers that can be written in bases 2, 3, 4, and 5 using only the digits 0 and 1.
Original entry on oeis.org
82000 = 10100000001010000 (2) = 11011111001 (3) = 110001100 (4) = 10111000 (5).
- Stuart A. Burrell and Han Yu, Digit expansions of numbers in different bases, arXiv:1905.00832 [math.NT], 2019.
- Daniel Glasscock, Joel Moreira, and Florian K. Richter, Additive transversality of fractal sets in the reals and the integers, arXiv:2007.05480 [math.NT], 2020. See p. 5.
- James Grime and Brady Haran, Why 82,000 is an extraordinary number, Numberphile video (2015)
- Alex P. Klinkhamer, Digits of 82000, search algorithm with code and analysis.
-
f[n_] := Total[Total@ Drop[RotateRight[DigitCount[n, #]], 2] & /@ Range[3, 5]]; Select[Range[0, 100000], f@ # == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
-
is(n)=vecmax(digits(n,5))<2 && vecmax(digits(n,4))<2 && vecmax(digits(n,3))<2 \\ Charles R Greathouse IV, Aug 31 2015
Removed keywords "fini" and "full", since it is only a conjecture that there are no further terms. -
N. J. A. Sloane, Feb 06 2016
A146026
Numbers that can be written from base 2 to base 9 using only the digits 0 to 3.
Original entry on oeis.org
0, 1, 2, 3, 8281, 8282, 8283
Offset: 1
-
Select[Range[0, 10^5], Function[n, Times @@ Boole@ Map[Max@ IntegerDigits[n, #] <= 3 &, Range[2, 9]] > 0]] (* Michael De Vlieger, Aug 15 2016 *)
A275600
Numbers that can be written in all bases from base 2 to base 6 using only the digits 0, 1 and 2.
Original entry on oeis.org
0, 1, 2, 6, 36, 37, 260, 1302, 1376, 1380, 1381, 1382, 1556, 1560, 1561, 1562, 16932, 562500, 562501, 562502, 562506, 562512, 562536, 562537, 562752, 562760, 23610752, 23610756, 23610757, 23610786, 23615750, 23615760, 23615761, 23615762, 23615785, 23615786, 23626310
Offset: 1
16932 is in the sequence because this number can be written in bases 2 through 6 using only the digits 0, 1 and 2: 16932(b4) = 10020210 / (b5) = 1020212 / (b6) = 210220.
-
Select[Range[10^6], Function[k, Max@ Flatten@ Map[IntegerDigits[k, #] &, Range[4, 6]] < 3]] (* or *)
Select[Range[10^5], Function[k, Total@ Flatten@ Map[Take[RotateRight@ DigitCount[k, #], -(# - 3)] &, Range[4, 6]] == 0]] (* (not as efficient) Michael De Vlieger, Aug 03 2016 *)
-
nextWithSmallDigits(n, base) = my (pow=1, rem=n, val=0, d); while (rem>0, d = rem % base; rem = rem \ base; if (d>2, val = 0; rem = rem+1, val = val + d*pow); pow = pow * base); return (val)
{ n = 0; prev = 0; while (n < 300, succ = prev; for (b=4,6, succ = nextWithSmallDigits(succ, b)); if (prev==succ, n = n+1; print(n " " prev); prev = succ+1, prev = succ)) } \\ Rémy Sigrist, Sep 08 2016
-
use ntheory ":all"; my($x,$n10)=(0,0); while ($x < 50) { my $n = fromdigits( todigitstring($n10++, 3), 6); next if vecany { $ > 2 } todigits($n, 4); next if vecany { $ > 2 } todigits($n, 5); print ++$x," $n\n"; } # Dana Jacobsen, Aug 16 2016
-
from gmpy2 import digits
A275600_list = [n for n in (int(digits(m,3),6) for m in range(10**6)) if max(digits(n,5)) <= '2' and max(digits(n,4)) <= '2'] # Chai Wah Wu, Aug 15 2016
A131646
Numbers that can be written from base 2 to base 18 using only the digits 0 to 9 (conjectured to be complete).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20, 1027, 1028, 1029, 14745, 9020076688681, 9439828025162228377, 9439829801208141318
Offset: 1
- B. R. Barwell, Numbers Without Letters, Journal of Recreational Mathematics, Vol. 25:3 (1993), 174-179.
-
f[n_] := Total[Total@ Drop[RotateRight[DigitCount[n, #]], 10] & /@ Range[11, 18]]; Select[Range[0, 20000], f@ # == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
-
isok(n) = if (n, for (b=11, 18, if (vecmax(digits(n,b))>9, return(0)))); 1; \\ Michel Marcus, Aug 30 2015
A146028
Numbers that can be written from base 2 to base 15 using only the digits 0 to 7.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 174731235562130, 174731235562131, 174731235562132, 174731235562143, 174731235562147, 174731235562170, 174731235562171, 174731235564710, 174731235564711, 174731236371006, 25354527232277132536350, 25354527232277132536351
Offset: 1
-
Select[Range[0, 10^5], Function[n, Times @@ Boole@ Map[Max@ IntegerDigits[n, #] <= 7 &, Range[2, 15]] > 0]] (* Michael De Vlieger, Aug 15 2016 *)
A146029
Numbers that can be written from base 2 to base 17 using only the digits 0 to 8 (conjectured to be complete).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 18
Offset: 1
-
Select[Range[0, 10^5], Function[n, Times @@ Boole@ Map[Max@ IntegerDigits[n, #] <= 8 &, Range[2, 17]] > 0]] (* Michael De Vlieger, Aug 15 2016 *)
Showing 1-6 of 6 results.
Comments