cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146510 Numbers congruent to {1, 4} mod 15.

Original entry on oeis.org

1, 4, 16, 19, 31, 34, 46, 49, 61, 64, 76, 79, 91, 94, 106, 109, 121, 124, 136, 139, 151, 154, 166, 169, 181, 184, 196, 199, 211, 214, 226, 229, 241, 244, 256, 259, 271, 274, 286, 289, 301, 304, 316, 319, 331, 334, 346, 349, 361, 364, 376, 379, 391, 394, 406
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

Positive integers k such that Hypergeometric[k/5,(5-k)/5,1/2,3/4] = 2Cos[Pi/5].

Crossrefs

Programs

  • Mathematica
    Select[Range[500],MemberQ[{1,4},Mod[#,15]]&] (* Harvey P. Dale, Jan 21 2016 *)

Formula

a(2k-1) = 15*(k-1)+1, a(2k) = 15*(k-1)+4, where k>0.
G.f.: x*(1 + 3*x + 11*x^2)/((1 - x)^2*(1 + x)). - Ilya Gutkovskiy, Dec 06 2016
E.g.f.: 11 + ((30*x - 35)*exp(x) - 9*exp(-x))/4. - David Lovler, Sep 08 2022

Extensions

Typo in name corrected by N. J. A. Sloane, Jan 21 2016
Formula and crossrefs corrected by Ray Chandler, Dec 06 2016