A147571 Numbers with exactly 4 distinct prime divisors {2,3,5,7}.
210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2520, 2940, 3150, 3360, 3780, 4200, 4410, 5040, 5250, 5670, 5880, 6300, 6720, 7350, 7560, 8400, 8820, 9450, 10080, 10290, 10500, 11340, 11760, 12600, 13230, 13440, 14700, 15120, 15750, 16800
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..10688
Crossrefs
Programs
-
Magma
[n: n in [1..2*10^4] | PrimeDivisors(n) eq [2,3,5,7]]; // Vincenzo Librandi, Sep 15 2015
-
Mathematica
a = {}; Do[If[EulerPhi[x]/x == 8/35, AppendTo[a, x]], {x, 1, 100000}]; a Select[Range[20000],PrimeNu[#]==4&&Max[FactorInteger[#][[;;,1]]]<11&] (* Harvey P. Dale, Nov 05 2024 *)
-
PARI
is(n)=n%210==0 && n==2^valuation(n,2) * 3^valuation(n,3) * 5^valuation(n,5) * 7^valuation(n,7) \\ Charles R Greathouse IV, Jun 19 2016
Formula
a(n) = 210 * A002473(n). - David A. Corneth, May 14 2019
Sum_{n>=1} 1/a(n) = 1/48. - Amiram Eldar, Nov 12 2020
Comments