cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147657 a(1)=1, a(2)=2, thereafter (1, -2, 3, -4, 5, -6, ...) interleaved with (-2, 2, -2, 2, ...).

Original entry on oeis.org

1, 2, 1, -2, -2, 2, 3, -2, -4, 2, 5, -2, -6, 2, 7, -2, -8, 2, 9, -2, -10, 2, 11, -2, -12, 2, 13, -2, -14, 2, 15, -2, -16, 2, 17, -2, -18, 2, 19, -2, -20, 2, 21, -2, -22, 2, 23, -2, -24, 2, 25, -2, -26, 2, 27, -2, -28, 2, 29, -2, -30, 2, 31, -2, -32, 2, 33
Offset: 1

Views

Author

Gary W. Adamson, Nov 09 2008

Keywords

Comments

Equals POLYMOTZKINTINV [1,2,3,...], such that POLYMOTZKINT A147657 = [1,2,3,...]. A comment accompanying the POLYMOTZKINT operation may be found in A005717.

Crossrefs

Programs

  • Mathematica
    Join[{1,2}, LinearRecurrence[{0, -2, 0, -1}, {1, -2, -2, 2}, 65]] (* Georg Fischer, Nov 02 2021 *)

Formula

(1, -2, 3, -4, 5,...) interleaved with (1, 2, -2, 2,...) such that the first subsequence starts after the first "2" in the second subsequence.
G.f.: x + x^2*(2+x+2*x^2)/(1+x^2)^2. - R. J. Mathar, Dec 13 2022

Extensions

Definition and a(28) ff. corrected by Georg Fischer, Nov 02 2021

A236203 Interleave A005563(n), A028347(n).

Original entry on oeis.org

0, 0, 3, 5, 8, 12, 15, 21, 24, 32, 35, 45, 48, 60, 63, 77, 80, 96, 99, 117, 120, 140, 143, 165, 168, 192, 195, 221, 224, 252, 255, 285, 288, 320, 323, 357, 360, 396, 399, 437, 440, 480, 483, 525, 528, 572, 575, 621, 624, 672, 675, 725, 728, 780, 783, 837, 840, 896
Offset: 2

Views

Author

Paul Curtz, Jan 20 2014

Keywords

Comments

A175628 gives the numerators of interleaved Lyman and Balmer series, i.e., A005563(n)/A000290(n+1) and A061037(n+2)/A061038(n+2).
Difference table of a(n):
-1, -3, 0, 0, 3, 5, 8, 12, 15, 21, 24, ...
-2, 3, 0, 3, 2, 3, 4, 3, 6, 3, 8, ...
5, -3, 3, -1, 1, 1, -1, 3, -3, 5, -5, ...
-8, 6, -4, 2, 0, -2, 4, -6, 8, -10, 12, ...
14, -10, 6, -2, -2, 6, -10, 14, -18, 22, -26, ...
-24, 16, -8, 0, 8, -16, 24, -32, 40, -48, 56, ... .
a(n+2) gives the numerators of 0/1, 0/16, 3/4, 5/36, 8/9, 12/64, 15/16, 21/100, 24/25, 32/144, ... . The denominators are A097362(n+1)^2. (Compare A097362 to A029578.)
Note the particular distribution of a(-n). Example:
a(n-9) = 12,15, 5,8, 0,3, -3,0, -4,-1, -3,0, 0,3, 5,8, 12,15, ... .
a(2n) + a(2n+1) = a(-2n-1) + a(-2n-2) = -4,0,8,20,36,56,80,... = 4*A000096(n-1).
a(2n) + a(2n-1) = a(-2n) + a(-2n-1) = -5,-3,3,13,... = A001105(n) - A010716(n).

Crossrefs

Programs

  • GAP
    List([2..60], n-> (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 ); # G. C. Greubel, Dec 04 2019
  • Magma
    [(2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8: n in [2..60]]; // Vincenzo Librandi, Jul 27 2014
    
  • Maple
    seq( (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8, n=2..60); # G. C. Greubel, Dec 04 2019
  • Mathematica
    CoefficientList[Series[x^2(3x^2-2x-3)/((x-1)^3(x+1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 27 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,0,3,5,8},60] (* Harvey P. Dale, Aug 30 2018 *)
  • PARI
    concat([0,0], Vec(x^4*(3*x^2-2*x-3)/((x-1)^3*(x+1)^2) + O(x^60))) \\ Colin Barker, Jan 26 2014
    
  • Sage
    [(2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 for n in (2..60)] # G. C. Greubel, Dec 04 2019
    

Formula

a(n+2) = (period 8: repeat 1, 16, 1, 1, 1, 4, 1, 1)*A175628(n+1).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n+4) - a(n-4) = 0, 8, 8, ... = A168397.
From Colin Barker, Jan 26 2014: (Start)
a(n) = (n^2 -4)/4 for n even, a(n) = (n^2 +2*n -15)/4 for n odd.
G.f.: x^4*(3 + 2*x - 3*x^2)/ ((1-x)^3*(1+x)^2). (End)
a(n) = (2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8. - Luce ETIENNE, Jul 26 2014
Sum_{n>=4} (-1)^n/a(n) = 11/48. - Amiram Eldar, Aug 21 2022

Extensions

More terms from Colin Barker, Jan 26 2014
Showing 1-2 of 2 results.